
  

Testing VICI

● Unit Tests

● Asynchronous Unit Tests

● Module Testing

● Program Testing

● GUI Program Testing



  

Unit Testing

Subdivide the Testing

● One Test Object

● Several Scenario Objects

● Many Test Case Objects



  

Test Classes

Test

Scenario

TestCase



  

Unit Testing

Resource Acquisition Is Initialization

The Constructor acquires the resources required 
for the test.

The body of the test case objects perform the 
tests.

The Destructor releases the resources.



  

Test Classes

Test

+Constructor()
+Destructor()

Scenario

+Constructor()
+Destructor()

TestCase

+Constructor()
+Destructor()
+runTests()



  

Unit Testing

Test Library

● Singleton Tester class manages the testing.

● Responsible for instantiating the test objects.

● Responsible for collecting and reporting the test 
results.



  

Test Classes

Test

+Constructor()
+Destructor()

Scenario

+Constructor()
+Destructor()

TestCase

+Constructor()
+Destructor()
+runTests()

Tester

+runTests()
+summary()

ScenarioResults
+numberOfTests
+numberOfFailures



  

Unit Testing Library

Some Problems

A reusable library cannot know about the test 
objects as they are specific to the test program.

The test program cannot create the test objects 
and pass them to the test harness since creating 
them would start them acquiring the resources.



  

Unit Testing Library
● Factory objects – responsible for creating the 
test objects.

● Testing library provides abstract versions that the 
test program derives from for the concrete 
scenarios and test cases.

● The factory objects can be created by the test 
program and handed to the Tester for safe 
keeping until they are needed.



  

Test Classes

Test

+Constructor()
+Destructor()

Scenario

+Constructor()
+Destructor()

TestCase

+Constructor()
+Destructor()
+runTests()

Tester

+runTests()
+summary()

ScenarioResults
+numberOfTests
+numberOfFailures

AbstractTest AbstractTestFactory

TestFactory

AbstractScenario

AbstractTestCase

+runTests()

AbsScenariofactory

ScenarioFactory

AbsTestCaseFactory

TestCaseFactory



  

Unit Test Library

● Tedious to have to create factory classes for 
each scenario and test case.

● Templates used to automate the process.

● Use the “Curiously Recurring Template Pattern”.

● Create a static “install” method for each test 
case and scenario that creates the factory and 
passes it to the Tester



  

Test Classes

AbstractTestCase

+runTests()

TestCaseT

+install()

MyTestCase:

MyTestCase

MyTestCaseFactory



  

Asynchronous Testing

● VICI uses threads and separate processes.

● Functions just initiate something on another 
thread or process, and some callback function 
is notified when the results come in.

● Don't know how long it will take.

● Callback may be in a different thread.



  

Async Test Case

Body of test case divided into three functions:

● InitTest() -  which triggers the processing.

● HandleEvent() - which responds to events 
when they occur.

● TimeOut() - when they don't.



  

Async Test Case

The function being tested needs to be instrumented to generate 
the events for the test harness.

This is done by including a pointer to a function 
(*AsyncTestEventFn)()

This pointer is normally aimed at an empty function, but during 
testing it is reset to point to a function which queues an event and 
then waits.

The test harness runs a separate thread which waits for these 
events and calls the HandleEvent method in the current test case.

When the HandleEvent method completes the function is allowed 
to proceed.



  

Test Classes

TestEvent

TestEventQueue

+enqueueEvent()

*

AbstractTestCase

AsyncTestCase

+initTest()
+handleEvent()
+timeOut()

AsyncTestCaseT

+install()

MyTestCase:

MyTestCase



  

Module Testing

One of the aims of VICI is to demonstrate building 
large systems from independently developed 
components.

VICI has the following modules:
● Common Infrastructure and Testing modules.
● Interfaces and Configuration modules.
● Application modules.



  

Module Testing

vici-cmd 
database

libxml2

libebnf
libsyntax

libQtGui

libQtCore

symbol
canvas

dot

command
vici-ed 
program

installer

search

tag 
database

libvici

libsecure

libcron

libxml2

libxml2

IF14

libQtGui

libQtGui

script 
database

libxml2

script 
database

IF03

IF04

IF05

IF06

IF07

IF08

IF09

IF11

IF18

IF19

IF20

IF21

IF22

IF23

IF24

IF25

IF26

IF15

IF27

IF28

IF29 IF30 IF31

IF32

IF33

IF34IF35
IF36

IF37

IF38

IF39

IF40

IF41

IF42

IF43

IF44

IF45 IF46

IF47

IF48

IF51

libcf

IF53

libcf

libcf

libcf



  

Module Testing

There is a basic conflict - 

● Want to develop modules independently.

● Modules depend on each other.



  

Module Testing

● Configuration library provides a FactoryFactory 
class that supplies Factory classes that provide the 
modules.

● Default Factories provide a stub library that is 
sufficient to compile.

● Searches the linked libraries for installed modules.
● Allows test code to substitute test versions of 

modules.



  

Program Testing

● Testing the completed programs.

● Ability to test internal state, not just external 
responses.

● Don't clutter up the program with test code that 
can be a vector for nefarious activities.

● Testing must be on the delivered program, not 
something that was compiled for testing.



  

Program Testing

Plug-in Libraries

VICI infrastructure includes support for plug-ins:
● Load and stay resident – for extensions to the 

program selected by the user or configuration.
● Load on demand – for functionality that is only 

needed briefly, such as a system handling hundreds 
of different types of forms.

● Autorun – load and run on start-up, and then unload. 
This is just what we need for testing.



  

GUI Program Testing

As for Program Testing with the additional 
requirement of simulating user interaction.

Need to have unchanged tests for a variety of 
distributions, desktop environments, monitor 

resolutions and languages.

This makes it impossible to simply record mouse 
positions and replay the clicks and key strokes.



  

GUI Testing

● Test harness will need to interact with the widgets either by 
simulating key strokes or directly calling their methods.

● Widgets are often private objects, inaccessible to the test 
code. 

● Widgets may be created dynamically as the program 
executes.

● Hence the program needs to tell the test harness about the 
widgets.

● The test harness may not be loaded. Result is link errors.



  

GUI Testing

● Use an intermediary – WidgetMgr

● Windows register their existence with WidgetMgr

● Test harness queries it to get list of windows.

● Test harness queries each window for its widgets.

● Test harness passes a pointer to a function to the 
window to avoid link errors.



  

GUI Testing

Adaptors

● Each widget is given a type and a name.

● The type is used to select an Adaptor object.

● The Adaptor object adapts a command and a 
list of parameters to calls on the widget.

● The Adaptor provides a common interface for 
all widgets (and a few other objects).



  

GUI Testing

Scripting
● It can be fiddly getting the sequence of events set 

up correctly for a test.
● By reading the commands and parameters from a 

script file we avoid having to recompile the test 
code for every minor change.

● Original design used a bash script and could do 
arbitrary processing to provide intelligent control of 
the application.



  

GUI Testing

Qt runs a second event loop for modal dialogs.

This causes the test harness code to get stuck as 
the call to display the dialog doesn't return until 
the user interacts with dialog buttons. 



  

GUI Testing

Event Driven Design

● Use focus change events to detect when a new 
window has focus.

● Start a new thread for each window. Doesn't 
matter if test code gets stuck – the new thread 
will be able to interact with new window.



  

GUI Testing

GUIs and threads don't mix. 

You can only interact with a GUI from the thread 
that you started it in.

All of the Adaptor objects are being called from 
other threads.



  

GUI Testing

● Qt provides a “queued connection” that can 
make a function call from a thread to the GUI 
thread.

● A queued connection is asynchronous and 
cannot pass results back to the caller.

● Adaptor may have methods that need to run in 
the GUI thread and others that need to run in 
the calling thread. 



  

GUI Testing

● Adaptor checks to see which thread its running 
in.

● If its the calling thread it does commands that 
get values from the widgets and returns results.

● If the command changes the widget the Adaptor 
makes a call to the GUI thread, passing its 
details.

● The Adaptor is re-run in the GUI thread.



  

GUI Testing

Scripting
● Can associate with the constructor and destructor of 

each test case a list of actions.
● Each action consists of:

● A label.
● A delay so that the tests don't happen too fast
● A widget name
● A command
● A list of parameters for the command.



  

GUI Testing

Still need some way of having the testing respond 
to the program. 

● Jump to a label.

● Variables

● LUA Scripting



  

GUI Testing

Label Jumps

● Each action may have a label.

● Result of action processed by up to two regular 
expressions (RE) each of which has an 
associated jump label.

● If the RE matches processing skips to the 
action with the corresponding jump label.



  

GUI Testing

Variables
● Each action may have a RE and a list of variable 

names.
● The RE is applied to the result of the action.
● The values of the sub-expressions are assigned to the 

names as variables.
● The parameters to other commands may refer to the 

variables.
● The test code may also refer to the variables.



  

GUI Scripting

Still need some way of doing more complex logic, 
such as performing an action based on the values 
of several widgets or what happened at some 
previous point in the testing.
● LUA can provide the logic.
● It is designed to be integrated into other 

programs.
● It handles the threads without issue.



  

GUI Scripting

● Each window can have a chunk of LUA code.

● The LUA scripts will be accessed via actions as 
if they were just another widget.



  

GUI Script Editor

The script is an XML file.

The test harness writes to the script file with 
details of the windows, widgets and adaptors.

A script editor:
● Assigns test cases to windows.
● Assigns actions to test cases.
● Creates the LUA script.



  



  



  


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

