
VICI

VISUAL CHART INTERPRETER

Design for libcanvas

Publication History

Date Who What Changes

20 September 2014 Brenton Ross Initial version.

Copyright © 2009 - 2014 Brenton Ross
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
The software is released under the terms of the GNU General Public License version 3.

ii

Design for libcanvas

Table of Contents
 1 Introduction..4

 1.1 Scope..4
 1.2 Overview...4
 1.3 Audience...4

 2 Overview..5
 2.1 Responsibilities...5
 2.2 Interfaces...6

 2.2.1 IF04 Canvas UI...6
 2.2.2 IF19 Canvas using Symbol...6
 2.2.3 IF20 Vici-ed using Canvas..6
 2.2.4 IF30 Canvas Library using libQtGui..7
 2.2.5 IF31 Canvas Library using libcfi..7

 2.3 Design Approach..8
 2.3.1 Symbols...8
 2.3.2 Lines..8
 2.3.3 Validation..8
 2.3.4 XML..9

 3 User Interface...10
 4 Application Design...12
 5 Collaboration Diagrams...13

 5.1 Place a Symbol...13
 5.2 Drag an Item...13
 5.3 Connecting Two Symbols..14

 6 Class Designs...16
 6.1 StateVariable Class...16
 6.2 GraphicsScene Class...16
 6.3 CanvasView Class..17
 6.4 Comment Class...17
 6.5 Item Class...17
 6.6 ItemDialog Class..18
 6.7 ItemFactory Class...18
 6.8 Corner Class..19
 6.9 LineSegment Class...19
 6.10 Line Class...20
 6.11 Page Class...21
 6.12 CanvasImpl Class...22
 6.13 CanvasFactoryImpl Class...23
 6.14 ScriptXml Class..23
 6.15 Item Classes..24
 6.16 Item Dialog Classes..25

Appendix A..26

iii

Design for libcanvas Introduction

 1 Introduction
This is part of the system design document for the VICI project.

 1.1 Scope

This document covers the detailed design of the canvas component. This
component is responsible for allowing the user to edit the flow chart diagrams.

The document will cover the Application Design and the User Interface
Design.

This design is for increment #1. It will require enhancement for subsequent
increments.

 1.2 Overview

The detailed design includes:

• Interface Stubs: A framework of facade classes for the modules.

• Use Case Descriptions: A description of how a user is expected to
interact with the application.

• Application Design: The classes and their relationships.

• User Interface Design: The design and layout of the graphical
components of the system.

• Persistent Storage Design: The specifications for the XML files used to
store configuration and scripts.

 1.3 Audience

This document is intended to be used by the designers and developers, and
later the maintainers, of the VICI project.

4 VICI

Design for libcanvas Overview

 2 Overview

 2.1 Responsibilities

This component provides a canvas on which the user can create a flow chart.
The component is responsible for saving the chart to an XML file, and is able
to restore a previously saved chart.

This is the list for increment #1. It will be extended for subsequent increments.

It addresses the following responsibilities:

T3.3: Place default symbol on diagram.

T3.5: Indicate a symbol has been selected.

T3.6: Move selected symbols to new positions on the diagram
following the mouse.

T3.7: Keep lines connected to other symbols.

T3.8: Remove deleted symbols.

T3.9: Save the flowchart as an XML file.

T3.10: Reconstruct a chart from the contents of an XML file.

T7.2: Allow the user to define the name of a function.

T9.2: Collect the text from the user and place it on the diagram.

T9.3: Save the text, its location and attributes, into the diagram XML
file.

T9.4: Restore the text to the diagram from an XML file.

T9.5: Allow the user to edit the text, or its attributes.

T9.6: Allow the removal of text from a diagram.

5 VICI

Design for libcanvas Overview

 2.2 Interfaces

This is the list of interfaces for increment #1. It will have an interface to the
interpreter for increment #2.

 2.2.1 IF04 Canvas UI

This is the user interface for the canvas, the component responsible for
allowing the user to create and edit the diagrams.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a
Pointer.

Content: 1. Flowchart diagram. (O)
2. Current selected symbols. (O)
3. User symbol selection. (I)
4. Desired position of symbol(s). (I)
5. User edit action (I)
6. Name of function. (I/O)
7. User text (I/O)
8. Location of execution points (O)

 2.2.2 IF19 Canvas using Symbol

This is the interface between the Canvas component and the Symbol
component.

Transport Medium: Memory

Protocol: C++ function calls., Qt signals and slots

Content: 1. Drawing surface (I)
2. Position of required symbol (I)
3. Currently selected symbol (O)
4. Attributes of text and symbols. (O)

 2.2.3 IF20 Vici-ed using Canvas

This is the interface between then vici-ed program and the component
responsible for the layout and display of the diagram.

Transport Medium: Memory

Protocol: C++ function calls, Qt signals and slots.

Content: 1. Sub-window for the canvas to use. (I)
2. Menu actions. (I)

6 VICI

Design for libcanvas Overview

3. Command descriptions (I)
4. Currently selected symbol. (O)
5. Thread execution point. (I)

 2.2.4 IF30 Canvas Library using libQtGui

This interface allows the canvas to display the diagram and interact with the
user to edit it.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Drawing operations on a QGraphicsScene
canvas.

 2.2.5 IF31 Canvas Library using libcfi

This is the interface that the canvas component uses to load and save the
scripts.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Create an XML document structure.
2. Add nodes to the document.
3. Add properties to nodes.
4. Save the document.
5. Read an XML file
6. Get nodes from the document
7. Remove nodes from the document.
8. Get properties from the document node.

7 VICI

Design for libcanvas Overview

 2.3 Design Approach

Prototype C++ code has been constructed that allows the user to create a flow
chart, and save and load the script as XML.

For the prototype a test harness simulated the symbol library, and provided
menus for setting the state of the application.

 2.3.1 Symbols

The symbols that will eventually be provided by libsymbol were provided by
the test application for the prototype. These symbols are managed by instances
of the Item class.

Each type of symbol is managed by a subclass of Item, such as ChoiceItem.
There is an associated dialog box that allows the user to set the properties for
each symbol. This also allows the user to set the command and options without
having to start libcommand or libsearch.

 2.3.2 Lines

The canvas library is directly responsible for drawing the lines interconnecting
the symbols.

The lines are drawn according to their style, with colour and thickness set
appropriately. It was initially intended that the lines would have arrow heads
that would be at the destination symbol. However, the irregular design of some
of the symbols made this problematic so the arrows are now draw at the mid
point of each line segment. I think this actually looks better.

Lines are made up of straight segments with corner objects linking them. A
line representing a flow of control is allowed to merge with an existing line by
terminating it on an existing corner. It is important that lines are removed in
the opposite order than they were constructed, otherwise a line will be left
dangling, and connected to a non-existent corner.

A gradient is applied to the line segments and corners when they are selected
to give them a glow effect. (Perhaps we should do something similar for the
symbol items.)

 2.3.3 Validation

There is some code that attempts to validate the connections and prevent the
worst of the possible errors. More is needed, specifically we need to ensure the
items at the ends of a line can be sensibly connected – at the moment it is
possible to connect two variables even though this would not achieve anything.

8 VICI

Design for libcanvas Overview

 2.3.4 XML

Saving the script to an XML file was quite straightforward. Loading it back
and reconstructing the diagram turned out to be a bit more problematic,
requiring new constructors for most items.

Currently a new XML document is created when the object is saved. This may
defeat designs that require other parts of the VICI editor to modify the
document – creating a menu, for example. It may be better to retain the XML
document when loading a file and just reconstruct the appropriate parts when
saving.

9 VICI

Design for libcanvas User Interface

 3 User Interface
The following diagram illustrates the user interface for the canvas component.

The component has two sections for its user interface. On the left is a tool bar,
and the right is the main drawing area with a separate tabbed page for each
function.

The tool bar icons are used as follows (from the top down)

• to start a new diagram,

• to start a new function on a new page,

• to put the mouse into selection mode (the default),

• to put the mouse into move mode for dragging the displayed area

• to put the mouse into text mode for the entry of text comments.

Symbols are placed on the diagram by first selecting the desired symbol from
the symbol palette provided by libsymbol. A mouse click will then place the
symbol on the diagram.

Lines are constructed by first selecting the type of line from the symbol palette
and then selecting the start item. The system will then draw a line from the
selected item to the current mouse position. Clicking on a second item will
complete the line. Clicking on the space between items will create a corner and

10 VICI

Design for libcanvas User Interface

start a new line segment. This is repeated until an item is clicked. If the end
item is the same as the start item the line is immediately removed. Flow of
control lines may also be terminated by clicking on an existing corner of a
different line (of a compatible type).

Any item or corner may be moved by selecting and dragging (with the mouse
button held down). A group of items may be selected by dragging the mouse to
create a rubber-band rectangle enclosing the group. Once selected they can be
moved as a group.

Items and lines have context menus. This can be used to remove an item or
line, open the properties dialog for the object, or for commands open the
command or search windows. Items can only be removed when they have no
connections. Lines can only be removed if no other line terminates on one of
its corners.

11 VICI

Design for libcanvas Application Design

 4 Application Design
The following diagram describes the relationships between the classes for the
canvas component.

12 VICI

Design for libcanvas Collaboration Diagrams

 5 Collaboration Diagrams
The following diagrams illustrate the interactions between the objects for the
important use cases.

 5.1 Place a Symbol

When the selects a command symbol and then clicks on the page the following
events occur:

 5.2 Drag an Item

When an item is repositioned the following events typically occur:

13 VICI

Design for libcanvas Collaboration Diagrams

 5.3 Connecting Two Symbols

The following diagrams describes the sequence of events when the user
connects two symbols with a line containing a corner.

The sequence starts when the user selects a line symbol from the symbol
palette.

Next the user selects an item to start the line from.

The user then moves the mouse and the line is extended from the item to the
mouse position.

14 VICI

Design for libcanvas Collaboration Diagrams

If the user presses the mouse in an open space the system inserts a corner.

Finally the user selects a second item and the line is connected.

15 VICI

Design for libcanvas Class Designs

 6 Class Designs
This section describes each class, including its responsibilities, and its public
and protected members.

 6.1 StateVariable Class

This is a template class that appears in the code as a simple variable, but which
calls a method on an object if its value is changed. The idea is that event
handlers can simply change this state variable. The consequences of the state
change are then passed on to the called object.

template< typename T, class C, void(C::*func)(T) >
class StateVariable
{
private:

T var;
C *obj;

public:
StateVariable(T x, C *y) : var(x), obj(y) {}
operator T () { return var; }
T operator = (T x)
{

if (var != x)
{

var = x;
(obj->*func)(var);

}
return var;

}
};

 6.2 GraphicsScene Class

This is a specialisation of QGraphicsScene that passes mouse press and mouse
move events to the main canvas class.

class GraphicsScene : public QGraphicsScene
{
private:

CanvasImpl * canvas; // reference
public:

GraphicsScene(CanvasImpl *);
void mousePressEvent (QGraphicsSceneMouseEvent * mouseEvent);
void mouseMoveEvent (QGraphicsSceneMouseEvent * mouseEvent);

};

16 VICI

Design for libcanvas Class Designs

 6.3 CanvasView Class

This is a specialisation of the QGraphicsView class so that we can implement
zooming using the mouse wheel.

class CanvasView : public QGraphicsView
{
public:

CanvasView(QWidget* parent = NULL);
protected:

//Take over the interaction
virtual void wheelEvent(QWheelEvent* event);

};

 6.4 Comment Class

This is a specialisation of the QGraphicsTextItem class that is used to hold
comments that the user can place anywhere on the flow chart. It includes a test
to see if the comment is empty. Whenever the state of the application is
changed any empty comments are removed.

class Comment : public QGraphicsTextItem
{
public:

Comment();
bool isEmpty();

};

 6.5 Item Class

This is the base class for the set of classes that manage symbols on the chart.
There is a child class for each type of symbol. It implements the SymbolOwner
interface so that it can be advised of user events on the displayed symbol.

It is responsible for keeping a list of connections. It has a method for checking
if a connection is allowed, but the implementation is delegated to the child
classes.

class Item : public QObject, public VICI::Symbol::SymbolOwner
{

Q_OBJECT
protected:

static int nodeCounter;
int nodeId;
CanvasImpl *canvas; // reference
VICI::ArgList args; // owned
VICI::Symbol::Symbol *symbol; // owned
QPointF position;
std::list<Line *> connections; // references
QMenu *contextMenu; // owned
QAction *delAct, *propAct; // owned

virtual void makeMenu();
virtual bool checkConnection(VICI::Symbol::Style,

bool atStart, QString & reason);

protected slots:

17 VICI

Design for libcanvas Class Designs

virtual void delAction();
virtual void propAction();

public:
Item(CanvasImpl *tc);
Item(int id, CanvasImpl *tc);
virtual ~Item();
int getId();
void setSymbol(VICI::Symbol::Symbol *s);
Symbol::Symbol *getSymbol();
void setArgs(VICI::ArgList &options);
virtual void selected();
virtual void opened();
virtual void dragged(double x, double y);
QPointF getPosition();
void setPosition(QPointF p);
bool allowConnection(VICI::Symbol::Style, bool atStart);
void addConnection(Line * line) ;
void delConnection(Line * line);
void getLines(Symbol::Style, std::vector< Line *> &);
virtual bool isCommand() const;
virtual void writeXml(ScriptXml *) = 0;

Item(const Item &) = delete;
void operator = (const Item &) = delete;

};

 6.6 ItemDialog Class

This is a base class for the set of dialogs for the item classes. It provides a
button box for OK and Cancel buttons, and a top level layout.

class ItemDialog : public QDialog
{
protected:

QVBoxLayout *topLayout;
void addButtons(); // adds OK and Cancel buttons

public:
ItemDialog(QString title, QWidget *parent);

};

 6.7 ItemFactory Class

This object is responsible for creating an Item object according to the specified
symbol.

class ItemFactory
{
public:

ItemFactory(){}
Item * makeItem(VICI::Symbol::Symbol *, CanvasImpl *);

};

18 VICI

Design for libcanvas Class Designs

 6.8 Corner Class

This class is a specialisation of QGraphicsItem that represents a corner
between two line segments. It maintains a list of line segments that connect to
it and has a method to check to ensure that a line is allowed to connect to it.

class Corner : public QGraphicsItem
{
private:

CanvasImpl *canvas;
QRectF shape;
QPen pen;
QBrush brush;
std::list< std::pair<bool, LineSegment *> >connections;
Line * line;

public:
Corner(CanvasImpl *canvas, Line *);
~Corner();
void addConnection(LineSegment * line, bool start);
void delConnection(LineSegment *);
bool allowConnection(VICI::Symbol::Style);
int numConnections() const;
Line *getLine();
virtual void paint(QPainter *painter,

const QStyleOptionGraphicsItem * option,
QWidget * widget);

virtual QRectF boundingRect() const;
QVariant itemChange (GraphicsItemChange change,

const QVariant & value);
};

 6.9 LineSegment Class

This class is a specialisation of QGraphicsItem that represents the straight lines
that make up a line connecting two symbols. each line segment has an arrow
head at its mid point and when selected a gradient is drawn that gives the
impression the line is glowing.

A line segment includes a QGraphicsTextItem as a child that contains the
label. Normally only the first line segment of a line has a label.

class LineSegment : public QGraphicsItem
{
private:

Line *owner;
QLineF mLine;
QPolygonF arrow, arrowShape;
QPolygonF lineShape;
QGraphicsTextItem *label;
QPen pen;
QBrush brush;
QLinearGradient grad;
bool isSelected;

void calcGradient(); // calculate the gradient
void calcShape(); // calculate the shape surrounding

// the line segment

public:
LineSegment(Line *);

19 VICI

Design for libcanvas Class Designs

~LineSegment();

void setIsSelected(bool x);
void setLine(QLineF);
QLineF line();
void setLabel(QString text);
std::string getLabel();
void setPen(QPen);
virtual void paint(QPainter *painter,

const QStyleOptionGraphicsItem * option,
QWidget * widget);

virtual QRectF boundingRect() const;
virtual QPainterPath shape() const;
QVariant itemChange (GraphicsItemChange change,

const QVariant & value);
void contextMenuEvent(QGraphicsSceneContextMenuEvent *event);

};

 6.10 Line Class

This class is a container for line segments and corners that are drawn between
two items or an item and a corner of another compatible line.

class Line : public QObject
{

Q_OBJECT
private:

static const int THIN_LINE_WIDTH = 2;
static const int THICK_LINE_WIDTH = 5;
CanvasImpl *canvas; // reference
VICI::CanvasScene *scene; // reference
Item * start; // reference
Item * end; // reference - used when line

// ends on an item
Corner * endCorner; // reference - used when line

// ends on a corner
std::vector< QGraphicsItem * > items; // owned
QPointF anchor;
LineSegment *currentLine; // owned;
QPen pen;
QString label;
Symbol::Style style;
bool hasExitCode;
QMenu *contextMenu;
QAction *delAct, *propAct;

void setLabel(int);

private slots:
void delAction();
void propAction();

public:
Line(CanvasImpl *, VICI::CanvasScene *, Item *begin);
Line(CanvasImpl *, VICI::CanvasScene *, Symbol::Style,

Symbol::Colour col, Item *fromItem,
Item * toItem,
int exitCode, std::vector< QPointF > &);

~Line();
void setStyle(Symbol::Style, QColor);
Symbol::Style getStyle() { return style; }
void setEnd(Item *);
void setEnd(Corner *);

20 VICI

Design for libcanvas Class Designs

Item * getStart() const;
Item * getEndItem() const;
Item * getTerminalItem() const;
LineSegment *getSegment();
void drawTo(double, double);
void moveEnd(Item *);
void addCorner(double x, double y);
Corner * isCorner(QPointF);
void selected(bool);
void contextMenuEvent(QGraphicsSceneContextMenuEvent *event);

bool hasMergedLines(); // returns true if another
// line terminates on a corner of this line

std::string getExitCode();
void writePoints(ScriptXml *);

Line(const Line &) = delete;
void operator = (const Line &) = delete;

};

 6.11 Page Class

This is a part of the CanvasImpl class that represents one page of the tabbed
widget. It holds the function item and the other items that make up the function
and the lines connecting the items. There is a mutual friend relationship to
CanvasImpl as it really is just a part of that object.

class Page
{

friend class CanvasImpl;
friend class ScriptXml;

private:
CanvasImpl *canvas; // reference
QTabWidget *tabWidget; // reference
QWidget *frame; // owned
std::string name;
QGraphicsView *view; // owned
VICI::CanvasScene * scene; // owned
FuncItem * function;
std::list< Item * > items; // owned
std::list< Line * > lines; // owned
std::list< Comment * > comments; // owned

public:
Page(CanvasImpl *, QTabWidget *, bool withFunction = true);
Page(const Page &) = delete;
~Page();
void operator = (const Page &) = delete;

};

21 VICI

Design for libcanvas Class Designs

 6.12 CanvasImpl Class

This is the implementation of the Canvas facade for the libcanvas library. It
manages the user interactions with the flow chart drawing areas.

class CanvasImpl : public QObject, public Canvas
{

Q_OBJECT
friend class Page;
friend class ScriptXml;

public:
enum EditMode { EmSelect, EmSymbol,

EmLineStart, EmLine, EmText };
private:

VICI::GWindow *window; // reference
Symbol::SymbolMgr * symbolMgr; // reference
Interp::Interpreter *interpreter; // reference

QTabWidget *tabWidget; // reference - owned by Qt
QToolBar *canvasToolBar;
QAction *newAction, *funcAct, *arrowAct, *beamAct, *handAct;

std::map< std::string, Page * > pages;
VICI::Symbol::Symbol *currentSymbol; // reference
Line *currentLine; // owned
Page * currentPage;

void editModeChange(EditMode);
StateVariable<EditMode, CanvasImpl,

 &CanvasImpl::editModeChange> editMode;
void cleanEmptyComments();

void createToolBar();

public:
CanvasImpl(Window *, Symbol::SymbolMgr *,

Interp::Interpreter *, CanvasClient *);

// menu actions
virtual void load(csr filename);
virtual void save(csr filename);

// display of executing script
virtual void setExecution(bool active, csr node);

// assigning a command to the current symbol
virtual void setCommand(csr command);

// symbol interface
virtual void selection(Symbol::Symbol*);
virtual void symbolAttr(Symbol::SymbolAttributes&);
virtual void textAttr(Symbol::TextAttributes&);

// interpreter client
virtual void setValue(csr varName, csr value);
virtual void setFile(int state, csr filename);
virtual void setCursor(ThreadId, NodeId);
virtual void breakReached(ThreadId, NodeId);
virtual void dataReady(NodeId);
virtual void done();

void mousePressEvent(QGraphicsSceneMouseEvent * mouseEvent);
void mouseMoveEvent(QGraphicsSceneMouseEvent * mouseEvent);
void itemSelected(Item *);

22 VICI

Design for libcanvas Class Designs

void itemOpened(Item *);
void cornerSelected(Corner *);
void deleteLine(Line *);
void deleteItem(Item *);
QPointF mapToView(QPointF);
QWidget *viewWidget() { return currentPage->view; }
void setPageName(std::string);
void deletePage(FuncItem *);

public slots:
void newChart();
void newFunc();
void pageChange(int);
void selectMode();
void dragMode();
void textMode();

};

 6.13 CanvasFactoryImpl Class

This is responsible for creating an instance of the CanvasImpl object.

class CanvasFactoryImpl : public CanvasFactory
{
public:

CanvasFactoryImpl(){}
Canvas * makeCanvas(Window *, Symbol::SymbolMgr *,

Interp::Interpreter *, CanvasClient *);
};

 6.14 ScriptXml Class

This is responsible for managing the process of saving and reloading a diagram
to an XML file.

class ScriptXml : public VICI::Xml
{
private:

CanvasImpl *canvas;
xmlNodePtr shapeNode; // used by write*Item functions.
xmlNodePtr lineNode; // used by writePoint function

static std::map< std::string, Symbol::Style > styleMap;
Item *getItem(Page *, csr itemRef);

void addMenus();
void addFunctions();
void addShape(Item *, xmlNodePtr parent);
void addLine(Line *, xmlNodePtr parent);
void addComment(Comment *, xmlNodePtr parent);
void loadFunction(xmlNodePtr);
void loadShape(Page *, xmlNodePtr);
void loadLine(Page *, xmlNodePtr);
void loadComment(Page *, xmlNodePtr);

public:
ScriptXml(CanvasImpl *c);
void saveScript(csr filename);

23 VICI

Design for libcanvas Class Designs

void loadScript(csr filename);

void writeCommandItem(bool bg, csr name, ArgList args);
void writeChoiceItem(bool bg, csr name, ArgList args);
void writeFuncRefItem(bool bg, csr name, ArgList args);
void writeFuncItem(csr name, csr menu);
void writeVarItem(csr name);
void writeConstItem(csr name, csr value);
void writeMutexItem(csr name);
void writeSemItem(csr name);
void writeFileItem(csr path, bool temp, bool append);
void writeInlineItem(csr data);
void writePipeItem(csr path, bool temp);
void writeDisplayItem();
void writeLockItem(csr name);
void writeUnlockItem(csr name);
void writePostItem(csr name);
void writeWaitItem(csr name, int);

void writePoint(double x, double y);
};

 6.15 Item Classes

Each symbol type has a corresponding class that derives from the Item class.
Each one has its own data items and a corresponding dialog class so that the
user can set the attributes. Each has a method that is used to write its content to
the XML file when saving, and a constructor that is used to reconstruct the
item from the XML.

Each one has a method that is used to tell if a line is able to connect to the item
in order to prevent the worst of the possible diagram syntax errors. (More is
needed in this regard.)

The following is for the CommandItem and is typical for these classes.

class CommandItem : public Item
{

Q_OBJECT
protected:

std::string name;
VICI::ArgList args;
bool bg;
QAction *searchAct, *cmndAct;
CommandDialog *dialog;
virtual void makeMenu(); // special case for command
virtual bool checkConnection(VICI::Symbol::Style,

bool atStart, QString & reason);

protected slots:
void searchAction();
void propAction();
void cmndAction();

public:
CommandItem(CanvasImpl *tc);
CommandItem(int id, CanvasImpl *tc, csr name,

ArgList args, bool bg);
virtual bool isCommand() const;
virtual void writeXml(ScriptXml *);

};

24 VICI

Design for libcanvas Class Designs

 6.16 Item Dialog Classes

Each item type has a corresponding dialog box so that the user can enter the
properties for the object. The following is for the Command Item and is typical
for these classes.

class CommandDialog : public ItemDialog
{

Q_OBJECT
private:

QLineEdit *name;
QListWidget *params;
QCheckBox *bg;

private slots:
void addBlank(QListWidgetItem *);
void changed(QListWidgetItem *, QListWidgetItem *);

public:
CommandDialog(QWidget *);
void getVals(std::string &, VICI::ArgList &, bool &);
void setVals(const std::string &, const VICI::ArgList &,

const bool &);
};

25 VICI

Design for libcanvas Appendix A

Appendix A

26 VICI

	1 Introduction
	1.1 Scope
	1.2 Overview
	1.3 Audience

	2 Overview
	2.1 Responsibilities
	2.2 Interfaces
	2.2.1 IF04 Canvas UI
	2.2.2 IF19 Canvas using Symbol
	2.2.3 IF20 Vici-ed using Canvas
	2.2.4 IF30 Canvas Library using libQtGui
	2.2.5 IF31 Canvas Library using libcfi

	2.3 Design Approach
	2.3.1 Symbols
	2.3.2 Lines
	2.3.3 Validation
	2.3.4 XML

	3 User Interface
	4 Application Design
	5 Collaboration Diagrams
	5.1 Place a Symbol
	5.2 Drag an Item
	5.3 Connecting Two Symbols

	6 Class Designs
	6.1 StateVariable Class
	6.2 GraphicsScene Class
	6.3 CanvasView Class
	6.4 Comment Class
	6.5 Item Class
	6.6 ItemDialog Class
	6.7 ItemFactory Class
	6.8 Corner Class
	6.9 LineSegment Class
	6.10 Line Class
	6.11 Page Class
	6.12 CanvasImpl Class
	6.13 CanvasFactoryImpl Class
	6.14 ScriptXml Class
	6.15 Item Classes
	6.16 Item Dialog Classes

	Appendix A

