
VICI

VISUAL CHART INTERPRETER

Design of libcommand

Publication History

Date Who What Changes

4 October 2012 Brenton Ross Initial version.

4 January 2014 Brenton Ross Detailed design

19 June 2014 Brenton Ross Updated for Vici

Copyright © 2009 - 2014 Brenton Ross
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
The software is released under the terms of the GNU General Public License version 3.

ii

Design of libcommand

Table of Contents
 1 Introduction..4

 1.1 Scope..4
 1.2 Overview...4
 1.3 Audience...4

 2 Overview..5
 2.1 Responsibilities...5
 2.2 Interfaces...5

 2.2.1 IF05 Command UI..5
 2.2.2 IF24 Vici-ed using Command...6
 2.2.3 IF25 Command using libsyntax..6
 2.2.4 IF26 Command using libxmlwrap..6
 2.2.5 IF27 Command using libebnf...7
 2.2.6 IF37 Command using libQtGui..7

 2.3 Design Approach..7
 3 User Interface...8
 4 Application Design...9
 5 Collaboration Diagrams...10

 5.1 Starting the Application..10
 5.2 Selecting a Command...10
 5.3 Accepting a Command...11
 5.4 Stopping the Application..11

 6 Class Designs...12
 6.1 ProcessOwner Class..12
 6.2 HelpText Class..12
 6.3 Validator Class..12
 6.4 OptionMgr Class...13
 6.5 Binary Class..13
 6.6 Alias Class..13
 6.7 CmndXml Class..14
 6.8 CmndHistory Class...14
 6.9 CommandFactoryImpl Class..14
 6.10 CommandImpl Class..15

Appendix A..16

iii

Design of libcommand Introduction

 1 Introduction
This is part of the system design document for the VICI project.

 1.1 Scope

This document covers the detailed design of the command library. This
component is responsible for allowing the user to enter a command and its
parameters that will be executed as part of a VICI script.

The document will cover the Application Design and the User Interface
Design.

This design is for increment #3.

 1.2 Overview

The detailed design includes:

• Interface Stubs: A framework of facade classes for the modules.

• Use Case Descriptions: A description of how a user is expected to
interact with the application.

• Application Design: The classes and their relationships.

• User Interface Design: The design and layout of the graphical
components of the system.

• Persistent Storage Design: The specifications for the XML files used to
store configuration and scripts.

 1.3 Audience

This document is intended to be used by the designers and developers, and
later the maintainers, of the VICI project.

4 VICI

Design of libcommand Overview

 2 Overview

 2.1 Responsibilities

The libcommand library is responsible or providing a user interface for
entering the commands that are executed by the VICI run-time. It has the
following responsibilities:

T4.1: Display a list of prepared commands.

T4.2: Attach the selected command to the selected symbol.

T4.3: Verify the selected command is appropriate for the selected
symbol.

T4.5: Collect a command and its options and attach it to the selected
symbol.

T5.1: Provide a window for displaying help text.

T5.2: Display the short description of prepared commands.

T5.3: Display the results of running the help command for prepared
commands.

T5.4: Display the man page for non-prepared commands.

T5.5: Display the info page for the selected command.

T6.1: Display the syntax chart for the command.

T6.2: Display the set of options and parameters available for the
command.

T6.4: Indicate which options and parameters are legal at the current
point in the command.

T6.5: Build a command line for the command from the user's selection
of options and parameters.

 2.2 Interfaces

The architecture document describes the following interfaces to th command
library. The library must implement these interfaces.

 2.2.1 IF05 Command UI

This is the user interface that allows a user to select a command and set its
options and parameters.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a
Pointer.

5 VICI

Design of libcommand Overview

Content: 1. Prepared Command List (O)
2. User command selection (I)
3. User suggested command and options. (I)
4. Short description of a prepared command (O)
5. Use selection of type of help text. (I)
6. Help text. (O)
7. Option and parameter list (O)
8. User option or parameter selection. (I)
9. Command line (I/O)

 2.2.2 IF24 Vici-ed using Command

This is the interface vici-ed uses to display the Command component that is
responsible for constructing the command and its options and parameters.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Sub-window (I)
2. The command (I)
3. The parameters and options (O)

 2.2.3 IF25 Command using libsyntax

This interface allows the Command component to display the syntax diagram
for the current command.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. The EBNF specification for the command (I)
2. The sub-window to display the syntax chart

into. (I)

 2.2.4 IF26 Command using libxmlwrap

This interface allows the Command component to read the database of
commands.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Create an XML document structure.
2. Add nodes to the document.
3. Add properties to nodes.
4. Save the document.

6 VICI

Design of libcommand Overview

5. Read an XML file
6. Get nodes from the document
7. Remove nodes from the document.
8. Get properties from the document node.

 2.2.5 IF27 Command using libebnf

This interface allows the Command component to suggest valid alternatives
for parameters and options.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Request the parsing of an EBNF string
returning a pointer to a parse tree data
structure.

 2.2.6 IF37 Command using libQtGui

This interface allow the command component to provide the graphical
elements that allow user interaction.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Command lists.
2. Text display fields.
3. Option and parameter lists.
4. User selections
5. User text input.

 2.3 Design Approach

The Qt library provides a suitable set of widgets for building the interface. A
feature of the Qt library is an extension to the class interface that allows one to
define functions as “signals”or “slots” which can then be connected together
making the usual widget call-back pattern unnecessary.

The most complex part is the running of the man or info in a terminal session.
Several alternatives were prototyped, but the most successful was to run an
X-Terminal as an embedded application. The user must then use the user
interface provided by the man or info programs in text mode, which is a bit of
a mismatch.

Otherwise the library is a standard user interface.

7 VICI

Design of libcommand User Interface

 3 User Interface
The following diagram illustrates the user interface provided by the library.

The “Commands” column lists all the commands that have been prepared for
Vici. Selecting one of these causes the options to be presented, and the
command to be entered into the “Selected Command” edit field. It also causes
the description to be displayed, and the man or info page to be displayed.

Double clicking on an entry in the “Options” column causes it to be appended
to the “Options & Parameters” list. Entries in the list can be edited or dragged
within the list. (Later enhancement should allow dragging of file names from
Nautilus or other file managers.) The current full option list is displayed below
the list.

Previous options and parameters for the selected command can be accessed
from the history arrows. This speeds up the case where a command is being
reused with slightly different options.

The user can also select either man pages or info pages to be displayed in the
terminal session at the right.

The syntax chart (not shown) is displayed below the terminal, allowing the
user to drill down to the allowed options for the selected command.

8 VICI

Design of libcommand Application Design

 4 Application Design
The following diagram describes the relationships between the classes used in
this library.

9 VICI

Design of libcommand Collaboration Diagrams

 5 Collaboration Diagrams
The following diagrams illustrate the interactions that take place when use
cases are performed.

 5.1 Starting the Application

The following diagram shows the sequence of events as the library initialises
itself.

 5.2 Selecting a Command

The following diagram shows the sequence of calls when the user selects a
command.

10 VICI

Design of libcommand Collaboration Diagrams

 5.3 Accepting a Command

The following diagram shows the sequence of calls when the user presses OK.

 5.4 Stopping the Application

The following diagram shows the sequence of events as the library shuts
down.

11 VICI

Design of libcommand Class Designs

 6 Class Designs
This section describes each class, including its responsibilities, and its public
and protected members.

 6.1 ProcessOwner Class

This class is responsible for managing a QProcess object, ensuring that it is
removed once it has completed. The class is used as a parent for the help text
display and also the command validator.

class ProcessOwner
{
protected:
 QProcess *process;
 void endProcess();
public:
 ProcessOwner();
 virtual ~ProcessOwner();
};

 6.2 HelpText Class

This class is responsible for displaying the help text for a command. This is
done by running an xterm instance and passing it the man or info command to
run.

class HelpText : private ProcessOwner
{
public:
 HelpText(QWidget *frame);
 void setCommand(csr);
 QWidget *widget();
};

 6.3 Validator Class

This class is responsible for ensuring that a command can be executed. It does
this by running the “which” command which checks the user's PATH variable
to find an instance of the command.

class Validator : public QObject, private ProcessOwner
{
public:
 Validator(QWidget *parent);
 void checkCommand(csr);
};

12 VICI

Design of libcommand Class Designs

 6.4 OptionMgr Class

This class is responsible for getting the options for a selected command. It uses
the EBNF parser to create a parse tree which it then extracts the options from.

class OptionMgr
{
public:
 OptionMgr();
 void getOptions(VICI::csr ebnf, std::vector< std::string > & options);
};

 6.5 Binary Class

This class is an open data structure containing the data extracted from the
XML file for a particular command.

class Binary
{
public:
 Binary(csr name);
 std::string getCommand(csr name); // name may be an alias

 std::string name;
 std::string description;
 std::string ebnf;
 std::vector< std::string > helpCommands;

 // associative array indexed by the name of the alias
 std::map< std::string, Alias > aliases;
};

 6.6 Alias Class

This class is also an open data structure containing the data extracted from the
XML file for an alias of a command.

class Alias
{
public:
 Alias(csr name, Binary *);
 Alias();

 std::string name;
 std::string options;
 std::string description;

 Binary * getOwner() { return owner; }
};

13 VICI

Design of libcommand Class Designs

 6.7 CmndXml Class

This class is responsible for getting the command data from the XML file.

class CmndXml : public VICI::Xml
{
public:
 CmndXml();

 // get list of all prepared commands, and all the defined
 // aliases from the command database.
 int getCommandList(std::vector< std::string > &);

 // get the details of a command,
 // name may be either a command or an alias
 bool getCommand(csr name, Binary &);

};

 6.8 CmndHistory Class

This class is responsible for maintaining the history of options associated with
each command. The aim is to make it easier to build scripts that use the same
command several times, but with slight variations in the options.

class CmndHistory : public QObject
{
 public:
 CmndHistory(QTextEdit *);

 // called when user hits OK
 // adds command options to end of list, removing any duplicates
 void addOptions(const QString &options);
 void setCommand(const QString &cmnd);

public slots:
 void next();
 void prev();
 void edited(); // the ui has been edited

signals:
 void allowNext(bool);
 void allowPrev(bool);
};

 6.9 CommandFactoryImpl Class

This class is the implementation of the CommandFactory class which is
responsible for creating an instance of the Command class.

class CommandFactoryImpl : public CommandFactory
{
public:
 virtual Command * makeCommand(Window *, CommandClient *);
};

14 VICI

Design of libcommand Class Designs

 6.10 CommandImpl Class

This class is the implementation of the Command class which is responsible
for collecting a command and its options from the user and attaching them to a
symbol.

class CommandImpl : public QObject, public Command
{
protected slots:
 void commandSelected();
 void commandEntered();
 void optionAdded(QListWidgetItem *);
 void helpOptionSelected(const QString &);
 void okSelected();
 void cancelSelected();
public:
 CommandImpl(Window *, CommandClient *);
 virtual ~CommandImpl();
 virtual void show();
 virtual void setCommand(csr);
 virtual void selection(VICI::Symbol::Symbol*);

 // needed for the interface, but not of interest to Command
 virtual void symbolAttr(VICI::Symbol::SymbolAttributes&){}
 virtual void textAttr(VICI::Symbol::TextAttributes&){}
};

15 VICI

Design of libcommand Appendix A

Appendix A

16 VICI

	1 Introduction
	1.1 Scope
	1.2 Overview
	1.3 Audience

	2 Overview
	2.1 Responsibilities
	2.2 Interfaces
	2.2.1 IF05 Command UI
	2.2.2 IF24 Vici-ed using Command
	2.2.3 IF25 Command using libsyntax
	2.2.4 IF26 Command using libxmlwrap
	2.2.5 IF27 Command using libebnf
	2.2.6 IF37 Command using libQtGui

	2.3 Design Approach

	3 User Interface
	4 Application Design
	5 Collaboration Diagrams
	5.1 Starting the Application
	5.2 Selecting a Command
	5.3 Accepting a Command
	5.4 Stopping the Application

	6 Class Designs
	6.1 ProcessOwner Class
	6.2 HelpText Class
	6.3 Validator Class
	6.4 OptionMgr Class
	6.5 Binary Class
	6.6 Alias Class
	6.7 CmndXml Class
	6.8 CmndHistory Class
	6.9 CommandFactoryImpl Class
	6.10 CommandImpl Class

	Appendix A

