
VICI

VISUAL CHART INTERPRETER

Architecture

Publication History

Date Who What Changes

25 April 2014 Brenton Ross Initial version.

2 November 2014 Brenton Ross Added Increment Plan references.

Copyright © 2009 - 2014 Brenton Ross
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
The software is released under the terms of the GNU General Public License version 3.

ii

Architecture

Table of Contents
 1 Introduction..6

 1.1 Scope..6
 1.2 Overview...6
 1.3 Audience...6

 2 Tactics..7
 2.1 Functional Requirements..7
 2.2 Environmental Requirements...13
 2.3 Quality Requirements...13

 3 Responsibilities..16
 3.1 Functional Requirements..16
 3.2 Environmental Requirements...22
 3.3 Quality Requirements...23

 4 Conceptual Model..25
 4.1 Process Tasks..25

 4.1.1 Architecture...25
 4.1.2 Interface Stubs..25
 4.1.3 Component Exploration..25
 4.1.4 Test Planning..25
 4.1.5 Application Design...25
 4.1.6 User Interface Design...26
 4.1.7 Use Case Design...26
 4.1.8 Persistent Storage Design...26
 4.1.9 Test Case Design and Implementation...26
 4.1.10 Class Design..26
 4.1.11 Design Review..26
 4.1.12 Implementation...27
 4.1.13 Code Review...27
 4.1.14 Configuration Preparation...27
 4.1.15 Documentation..27
 4.1.16 Documentation Review...28
 4.1.17 Testing...28
 4.1.18 Packaging..28
 4.1.19 Integration Testing..28

 4.2 Components..28
 4.2.1 Administration GUI..28
 4.2.2 Graphical Script Editor...29
 4.2.3 Layout Program..31
 4.2.4 Desktop Installer...31
 4.2.5 Command Search Facility...31
 4.2.6 Script Interpreter...32
 4.2.7 Script Runtime..33
 4.2.8 Secure Signing Facility...34
 4.2.9 Graphical Crontab Editor..34

iii

Architecture

 5 Logical Model..35
 5.1 Implementation Modules..35

 5.1.1 The vici-adm Program..35
 5.1.2 The vici-cmd Database...35
 5.1.3 The libcfi Library..36
 5.1.4 The trc2dot Program...36
 5.1.5 The libxml2 Library..36
 5.1.6 The libebnf Library...37
 5.1.7 The libsyntax Library..37
 5.1.8 The libcc Library...37
 5.1.9 The libQtGui Library..37
 5.1.10 The libQtCore Library..37
 5.1.11 The symbol Library...37
 5.1.12 The canvas Library...38
 5.1.13 The GraphViz dot Program...39
 5.1.14 The command Library...39
 5.1.15 The vici-ed Program...39
 5.1.16 The installer Library...40
 5.1.17 The search Library..41
 5.1.18 The tag Database...41
 5.1.19 The libvici Library..41
 5.1.20 The vici Program...43
 5.1.21 The libsecure Library..43
 5.1.22 The libcron Library...43
 5.1.23 The libifstubs Library...44

 6 Interfaces..46
 6.1 External Interfaces..46

 6.1.1 IF01 Vici Admin UI..46
 6.1.2 IF02 Syntax Chart...46
 6.1.3 IF03 Symbol Palette..47
 6.1.4 IF04 Canvas UI...47
 6.1.5 IF05 Command UI..47
 6.1.6 IF06 Vici Editor UI...48
 6.1.7 IF07 Installer UI..48
 6.1.8 IF51 Installing Scripts onto Desktop..49
 6.1.9 IF08 Search UI..49
 6.1.10 IF09 Command Execution..49
 6.1.11 IF10 Vici Runtime..50
 6.1.12 IF11 Cron Interface...50

 6.2 Internal Interfaces...50
 6.2.1 IF12 Vici-adm to libebnf..50
 6.2.2 IF13 Vici-adm to libsyntax...51
 6.2.3 IF14 libsyntax to libebnf...51
 6.2.4 IF15 libxml2 to Command Database..51
 6.2.5 IF16 Vici-adm using libcfi..51
 6.2.6 IF52 libcfi using libxml2..52
 6.2.7 IF17 Vici-adm using libQtGui..52
 6.2.8 IF18 Vici-ed using Symbol...52

4 VICI

Architecture

 6.2.9 IF19 Canvas using Symbol...53
 6.2.10 IF20 Vici-ed using Canvas..53
 6.2.11 IF21 Canvas using GraphViz dot..53
 6.2.12 IF22 Vici-ed using Search..54
 6.2.13 IF33 Search using libcfi..54
 6.2.14 IF53 libcfi using libxml2..54
 6.2.15 IF34 Search using libQtGui..55
 6.2.16 IF23 libxml2 using the Tag Database...55
 6.2.17 IF24 Vici-ed using Command...55
 6.2.18 IF25 Command using libsyntax..55
 6.2.19 IF26 Command using libcfi..55
 6.2.20 IF27 Command using libebnf...56
 6.2.21 IF37 Command using libQtGui..56
 6.2.22 IF28 Syntax Library using libQtGui...56
 6.2.23 IF29 Symbol Library using libQtGui..57
 6.2.24 IF30 Canvas Library using libQtGui..57
 6.2.25 IF31 Canvas Library using libcfi..57
 6.2.26 IF32 libxml2 using the Script Database......................................58
 6.2.27 IF35 Vici-ed using libcron..58
 6.2.28 IF41 libcron using libQtGui..58
 6.2.29 IF42 libcron using the Script Database.......................................58
 6.2.30 IF40 Vici-ed using Installer..59
 6.2.31 IF43 Installer using libQtGui..59
 6.2.32 IF44 Installer accessing the Script Database..............................59
 6.2.33 IF38 Vici-ed using libsecure...59
 6.2.34 IF36 Vici-ed using libQtGui...60
 6.2.35 IF39 Vici-ed using libvici...60
 6.2.36 IF45 libvici using libQtCore...60
 6.2.37 IF46 libvici using libcfi...60
 6.2.38 IF47 libxml2 accessing Script Database.....................................61
 6.2.39 IF48 libvici using libsecure...61
 6.2.40 IF49 Vici program using libvici..61
 6.2.41 IF50 Vici Program using libQtGui...61

5 VICI

Architecture Introduction

 1 Introduction
This document describes the architecture for the Visual Chart Interpreter
(VICI) project.

 1.1 Scope

The document will include the tactics, the conceptual architecture, and the
implementation architecture for the VICI project. It will also include details of
the interfaces between the components of the system, and also between the
system and any externally connected systems.

In addition to the high level design the architecture will also include the
policies and guidelines that are to be used during detailed design and
implementation.

 1.2 Overview

The requirements are examined and a set of tactics chosen to best satisfy them.
The tactics imply a set of responsibilities which are then assigned to
components of the conceptual model of the proposed system, or to aspects of
the development process itself.

The conceptual model is then transcribed onto an implementation model
consisting of third party products plus those components that will be
developed for this project.

The interfaces between these components are then fully specified so that test
harnesses can be constructed for the modules before any other work is
undertaken.

Finally the policies and guidelines for the design and implementation are
prepared so that future work is done in a consistent manner that preserves the
architecture of the system.

 1.3 Audience

This document is intended to be used by the developers and maintainers of the
VICI project.

6 VICI

Architecture Tactics

 2 Tactics
The first step in developing the architecture for a system is to decide on the
tactics to be used to satisfy each requirement.

In the following we list each tactic and the requirements it is meant to satisfy.

 2.1 Functional Requirements

T1: Construct an administration tool for preparing commands.

A small separate GUI program is proposed as it will potentially be used by
different users. It has a different pattern of usage to the main editor. It can be
developed independently.

R1: Provide a means of preparing a command for use by this system so
that it can be more easily used by ordinary users.

R3: The system will allow an administrator to specify the EBNF of the
syntax for the commands that are supported by this program.

R4: The EBNF used to define the syntax of a command's parameters
and options will be that specified in Appendix B

R5: The system will allow an administrator to set up aliases for
common commands and some of their parameters.

R90: Allow the user to export one or more prepared commands.

R91: Allow the user to import one or more prepared commands.

T2: Use the administration tool to prepare the commands.

We will need to provide an initial library of prepared commands. We can use
the VICI administration program to perform this task.

R2: The commands listed in Appendix A will be prepared for use with
this system.

T3: Construct an editor for the graphical layout of flowchart symbols.

R6: Provide a means for users to create scripts using the graphical
interface.

R15: Allow the user to define the processing order within a script by
laying out the commands in a flow chart.

R16: Provide a palette of common flowchart symbols.

R17: The visual scripting language (VSL) will use the symbols
described in Appendix C.

R18: Allow groups of symbols to be re-positioned while maintaining
the links between symbols.

RQC1: The system must record in the script the user name of anyone
who edits it.

7 VICI

Architecture Tactics

RQD3: The editor should automatically backup scripts and allow the
user to easily revert to a previous version.

T8: Use a layout program to reorganise the layout of a diagram.

R20: Provide an option that attempts automatic layout of the flowchart
diagram.

T9: Allow the user to enter text at any location on the diagram.

R21: Allow the user to insert comments into the flowchart.

T4: Allow user to attach commands to the symbols on the flowchart.

R7: The system will allow the user to select from the set of prepared
commands.

R8: The system will allow the user to enter any command and its
parameters, not just those that have been prepared for this system.

T5: Display help text for the selected command.

R9: Provide guidance for common commands, including guidance on
the parameters and easy to understand documentation.

R30: The editor shall allow the user to view the man page for selected
commands.

R31: The editor shall allow the user to view the info page for selected
commands.

T6: Provide a user interface that guides the user through the options for a
command.

R10: The system shall allow the user to enter short options, long
options, parameters and name=value pairs as required by the
commands.

R11: Guide the user in selecting the parameters for the commands used
in their scripts.

R12: The system will allow the user to select the parameters from a
palette of parameters and options applicable to the selected command.

R13: The system will hide or disable options and parameters which are
inapplicable.

R14: The system will display a syntax chart for the selected command.

T7: Provide the ability to create script functions.

R19: Allow a group of symbols to be promoted into being a separate
function.

R55: The VSL will include the ability to group commands and split
them out into a separate function which can be reused.

R56: The VSL will allow the user to attach a function to a menu item
so that it can be executed independently.

8 VICI

Architecture Tactics

T10: Provide the means of managing the installation of scripts into the
desktop.

R22: The editor will create desktop files according to the
freedesktop.org specification. desktop-entry-spec-1.0.html

R23: The editor will create menu entries for the desktop according to
the freedesktop.org specification. menu-spec-1.0.html

R24: The editor will place desktop files and menu entries according to
the freedesktop.org specification. basedir-spec-0.6.html

R25: The editor will allow the user to remove a script and its associated
desktop files and menu entries.

R26: Allow the user to install their script from the editor in which it
being created.

T11: Provide a search capability over the help text.

R27: Provide a means of allowing a user to find commands that satisfy
their needs.

R28: The editor will allow the user to use the apropos command in
order to search for commands to use.

R29: The editor will allow the user to search the descriptions of the
prepared commands.

T12: Provide a tag:command database where commands and tags can be
classified using other tags, and which can be searched using set expressions.

R32: Allow the user to associate tag identifiers with the commands.

R33: Provide an initial set of tags for commands.

R34: Allow the user to select commands using tags.

R35: Allow the user to build set expressions for the tags, including
union and intersection.

R36: The editor will allow the user to classify commands by
associating one or more tags with each one.

R37: The search tags will be able to be classified into an hierarchy.

T13: Provide a runtime interpreter that can be controlled down to individual
steps.

R38: Allow a user to test their script before installing it.

R39: Allow the user to step through the script one command at a time
with a visual indication of what is happening.

R40: The VSL will allow the user to run a section of a script by
defining start and break points.

R41: The VSL will allow the user to run all or part of a script in slow
motion by inserting a configurable amount of sleep between each
command.

9 VICI

Architecture Tactics

R57: The VSL will allow a function to be run as a background task.

R58: The VSL will allow the user to determine which command to
execute next based on the exit status of the previous command: either
unconditionally, on success, on fail, or on a particular exit status value.

R59: The VSL will allow the user to connect commands using a
pipeline. Connections may be from either stdout, stderr, or both.

R63: The VSL will allow commands to be run in the background. Such
commands will be terminated when the script completes.

T14: Display the values for all variables during testing.

R39: Allow the user to step through the script one command at a time
with a visual indication of what is happening.

R42: Allow a user to observe the internal working of a script while
testing it.

R44: The VSL will allow the user to edit the values of variables while
the system is paused.

R45: The system will allow the user to observe the values of variables
when run from within the editor.

R46: The system will clearly indicate which commands are about to be
processed, or are being processed, and which variables are being
referenced during testing.

R47: The system will show the stack variables for the thread that is
currently being displayed.

R50: The system will allow the user to select and display each thread
separately.

T15: Provide snapshot and restore capability for testing.

R43: The VSL will allow the user to save and restore the values of
variables and the state of the call stacks so that sections of a script can
be re-run.

R51: The system will allow the user to take a snapshot of a file and
restore it as necessary for their testing.

T16: Provide a file viewing capability.

R48: The system will allow the user to observe the content of selected
files while being run from with the editor. An option to view the tail of
the file shall be provided.

R49: The system will allow the user to monitor the size of files and
other properties during testing.

T17: Provide a customisation option for the diagram editor.

R52: The VSL will allow the user to define the colours, patterns and
textures used for the background of commands and lines to best suit
their vision and cultural requirements.

10 VICI

Architecture Tactics

T18: Provide a user configurable window management system.

R53: Provide the user with a configurable editor that allows sub-
windows to be sized and positioned.

R54: Automatically configure sub-windows according to the size and
shape of the display screen.

T19: Provide a set of built-in commands.

R60: The VSL will include a built in command for changing the current
working directory of the script.

R61: The VSL will include a built in command that passes one line of
input at a time to its output pipe. This will allow the user to build a loop
structure that process each line of input.

R62: The VSL will include a built in command that sets one or more
parameters to the values on its input pipe. This will allow the user to
build a loop structure that processes variables separated by white space.

R64: The VSL will allow the user to connect the output of a command
to a named pipe.

R65: The VSL will allow the user to send a signal to a background
command.

T20: Provide the ability to pipe data between processes.

R64: The VSL will allow the user to connect the output of a command
to a named pipe.

R66: The VSL will allow the user to connect the output of a command
to a file, and may specify over-write or append modes.

R67: The VSL will include references to files.

T21: Provide an in-line file capability with variable expansion.

R68: The VSL will include the equivalent of the in-line file. The in-line
file may contain references to variables that will be expanded when the
file is referenced.

T22: Provide a clean up function that removes temporary objects.

R69:

T23: Provide a means of automatically signing scripts

R70: The VSL will allow the user to specify a file as being temporary,
and such files will be automatically removed when the script
terminates.

RQC2: The system must only open or run scripts which have been
signed by the user or by one of an administrator controlled list.

T24: Support the use of variables in the scripts.

R71: The VSL will allow the user to store the output of a command
into a variable.

11 VICI

Architecture Tactics

R72: The VSL will allow the user to define variables and constant
values which can be referenced as (parts of) parameters to commands
by preceding their name with a $ sign.

R73: The VSL will allow the user to perform simple arithmetic on
numeric variables. One of +, - , *, / and % can be specified as the
operator.

R74: The VSL will include built in variables containing the process id
of each command started in background mode.

R75: The VSL will include a built in variable containing the exit status
of the last command to complete.

R76: The VSL will include built in variables that allow a function to
have parameters. These will be numeric indexes into the parameters
placed on the call stack.

R77: The VSL will enable the user to define variables that will take the
value dropped onto a text entry field in the runtime. The runtime will
display a text entry field for each of these variables.

R78: The VSL will enable the user to define mutex variables that can
be used to synchronise the processing of two or more threads of control
within the script.

R79: The VSL will enable the user to define a semaphore variable and
a signalling command that can be used to increment the semaphore.

T25: Provide a runtime program for executing the scripts.

R80: Provide a means for users to run scripts from the graphical
desktop.

R81: Allow the user to navigate the script to some folder.

R82: Allow scripts to be triggered from events such as program start,
drag-n-drop, or menu action.

R83: Allow the user to terminate any running script from a menu
option.

R84: The runtime shall include menu entries for any script function
flagged as being attached to a menu.

R85: The runtime may provide text areas for accepting user input
and/or displaying stdout and stderr if the script specifies them.

R86: Allow the user to launch their script by dragging and dropping a
file name onto the script's desktop window.

R87: Allow the user to open a file browser using a menu in the scripts
desktop window.

R88: The runtime shall include options to stop and to restart a script.

T26: Provide a user interface that allows the user to set a crontab entry for a
script.

12 VICI

Architecture Tactics

R89: Provide a means of automatically launching a script at a
prescribed time.

 2.2 Environmental Requirements

T27: Build using open source and cross-platform capable components.

RE1: The system must run on any Linux platform that supports the
freedesktop.org specification.

RE2: The system must use open source, GPL components (or those
which have no usage restrictions).

T28: Build using autotools.

RE1: The system must run on any Linux platform that supports the
freedesktop.org specification.

T29: Verify freedesktop compatibility

RE1: The system must run on any Linux platform that supports the
freedesktop.org specification.

 2.3 Quality Requirements

T30: Use the Qt framework for GUI components.

RQC3: The system's UI components must present an attractive and
non-intimidating interface.

T31: Hide UI components until they are needed.

RQC3: The system's UI components must present an attractive and
non-intimidating interface.

T32: Use event driven design (rather than polling).

RQC4: The system should not place any significant extra load on the
system beyond what is necessary for the commands being executed.

T33: Use clear and informative error messages.

RQC5: The system must provide clear feedback for all actions and
error conditions. This must be provided in clear English and include
some guidance on what action is required to resolve any problems.

T34: No privileged components will be allowed.

RQC6: It must not be possible to use the system to gain access that the
user would not normally have.

T35: Provide comprehensive administration guides, user guides and tutorials.

RQC7: It should be easy to demonstrate the system. The system should
be packaged with a set of tutorials and guides that make it easy to learn
how to use.

13 VICI

Architecture Tactics

RQD6: The system shall include an administrator's guide, a user's
guide, tutorials and a video introduction that demonstrates a complete
script being made, installed and run.

T36: Provide video guides illustrating the complete process of building,
installing and running a script.

RQC7: It should be easy to demonstrate the system. The system should
be packaged with a set of tutorials and guides that make it easy to learn
how to use.

RQD6: The system shall include an administrator's guide, a user's
guide, tutorials and a video introduction that demonstrates a complete
script being made, installed and run.

T37: Use a software engineering approach to the construction.

RQC8: The runtime component must be dependable so that the user
can trust that their scripts will be executed correctly and when needed.

RQT7: Support for testing the components must be included as part of
the system.

RQP1: The system shall be developed using a well defined
development methodology.

T38: Use a test driven development methodology.

RQC8: The runtime component must be dependable so that the user
can trust that their scripts will be executed correctly and when needed.

RQT7: Support for testing the components must be included as part of
the system.

RQP1: The system shall be developed using a well defined
development methodology.

T48: Provide Linux standard packages.

RQD1: The system must be easy to administer. It should require little
more than installing for it to be usable.

T39: Provide a script that promotes scripts to an administrator's site key.

RQD2: The system must allow an administrator to promote a user's
script for site wide use.

T40: Use XML for persistent storage and configuration.

RQD4: Any configuration files must use a simple text format or an
editor for the format must be included. (XML may be considered
simple.)

RQD5: All data will be stored in open accessible formats such as XML.

RQT6: It must be easy to replace the system with an alternative
product.

T41: Review design for unnecessary libraries.

14 VICI

Architecture Tactics

RQD7: The number of libraries that this system depends on should be
minimised, but not at the expense of best practice.

T42: Use an object oriented language.

RQT1: It must be easy to extend the system to support additional
requirements.

T43: Provide clear guidelines and coding standards.

RQT2: It must be easy to understand the programs so that other
developers can maintain and extend it.

RQT3: Variables and methods will have a consistent naming standard.

RQT4: It shall be easy to adapt the software for new locales.

RQT5: It shall be possible to adapt the software for any platform on
which Linux runs a conforming desktop environment.

RQS4: The design shall use a consistent naming standard.

T44: The static design will include class diagrams showing the relationships
between the classes.

RQS1: The design of the system must be easy to follow.

T45: The dynamic design will include automatically generated collaboration
diagrams generated from trace information.

RQS1: The design of the system must be easy to follow.

T46: The system will include Makefiles and configure scripts.

RQS2: It shall be straightforward to build the system.

T47: The system will be created from separately constructed modules.

RQS5: The design shall allow the system to be extended to cater for
additional functionality.

RQS6: The system shall be constructed in a modular manner with the
separate components capable of independent testing.

RQS7: Components of the system will be as independent of each other
as is practical so that they may be changed without adversely affecting
other components.

15 VICI

Architecture Responsibilities

 3 Responsibilities
In this section we break each tactic down into a set of responsibilities.

A responsibility is something that can be attributed to either a part of the
executable deliverable program, or to some step of the development process.

 3.1 Functional Requirements

Req. Tactic Responsibilities

R1
R3
R4
R5
R90
R91

T1: Construct an
administration tool for
preparing commands.

(Increment #3)

T1.1: Collect the name of the command.(#3)

T1.2: Collect the syntax of the options. (#3)

T1.3: Collect a short description of the
command. (#3)

T1.4: Collect the commands to show the
help documentation. (#3)

T1.5: Construct an XML document from the
user input. (#3)

T1.6: Save the XML document to disk. (#3)

T1.7: Load the XML document from disk.
(#3)

T1.8: Restore user entered data from the
XML document. (#3)

T1.9: Generate a syntax diagram for the
command. (#3)

T1.10: Validate the EBNF of the option
syntax. (#3)

T1.11: Collect a name and some options to
be used as an alias command. (#3)

T1.12: Define the format of the XML file for
commands. (#3)

T1.13: Export selected commands. (#3)

T1.14: Import commands. (#3)

R2 T2: Use the administration tool
to prepare the commands.

(Increment #3)

T2.1...T2.107: Prepare the command. (#3)

T2.108: Arrange for the prepared
commands to be included in the distributed
package. (#3)

R6
R15
R16
R17
R18
RQC1

T3: Construct an editor for the
graphical layout of flowchart
symbols.

(Increment #1)

T3.1: Display a set of flowchart symbols in a
palette. See Appendix C of the
Requirements document. (#1)

T3.2: Indicate a default symbol on the
palette. (#1)

T3.3: Place default symbol on diagram. (#1)

16 VICI

Architecture Responsibilities

Req. Tactic Responsibilities

RQD3 T3.4: Create a new empty diagram. (#1)

T3.5: Indicate a symbol has been selected.
(#1)

T3.6: Move selected symbols to new
positions on the diagram following the
mouse. (#1)

T3.7: Keep lines connected to other
symbols. (#1)

T3.8: Remove deleted symbols. (#1)

T3.9: Save the flowchart as an XML file. (#1)

T3.10: Reconstruct a chart from the contents
of an XML file. (#1)

T3.11: Define the format of the XML file. (#1)

T3.12: Record the user name in the script.

T3.13: Create backups automatically.

R20 T8: Use a layout program to
reorganise the layout of a
diagram.
(Increment TBA)

T8.1: Create a description of the diagram in
the language of the layout program.

T8.2: Execute the layout program.

T8.3: Update the layout of a diagram based
on the results from a layout program.

T8.4: Revert the layout to the previous
arrangement when directed to by the user.

R21 T9: Allow the user to enter text
at any location on the
diagram.

(Increment #1)

T9.1: Provide a palette of text attributes. (#1)

T9.2: Collect the text from the user and
place it on the diagram. (#1)

T9.3: Save the text, its location and
attributes, into the diagram XML file. (#1)

T9.4: Restore the text to the diagram from
an XML file. (#1)

T9.5: Allow the user to edit the text, or its
attributes. (#1)

T9.6: Allow the removal of text from a
diagram. (#1)

R7
R8

T4: Allow user to attach
commands to the symbols on
the flowchart.

(Increment #1, #3)

T4.1: Display a list of prepared commands.
(#3)

T4.2: Attach the selected command to the
selected symbol. (#3)

T4.3: Verify the selected command is
appropriate for the selected symbol.

T4.5: Collect a command and its options and
attach it to the selected symbol. (#1)

17 VICI

Architecture Responsibilities

Req. Tactic Responsibilities

R9
R30
R31

T5: Display help text for the
selected command.

(Increment #3)

T5.1: Provide a window for displaying help
text. (#3)

T5.2: Display the short description of
prepared commands. (#3)

T5.3: Display the results of running the help
command for prepared commands. (#3)

T5.4: Display the man page for non-
prepared commands. (#3)

T5.5: Display the info page for the selected
command. (#3)

R10
R11
R12
R13
R14

T6: Provide a user interface
that guides the user through
the options for a command.

(Increment #3)

T6.1: Display the syntax chart for the
command. (#3)

T6.2: Display the set of options and
parameters available for the command. (#3)

T6.3: Display the set of variables that are
defined. (#3)

T6.4: Indicate which options and parameters
are legal at the current point in the
command. (#3)

T6.5: Build a command line for the
command from the user's selection of
options and parameters. (#3)

R19
R55
R56

T7: Provide the ability to
create script functions.

(Increment #1)

T7.1: Replace a group of symbols with a
function symbol and place the group of
symbols onto a new diagram.

T7.2: Allow the user to define the name of a
function. (#1)

T7.3: Allow the user to attach a function to a
menu item. (#1)

T7.4: Allow user to arrange menu items.

R22
R23
R24
R25
R26

T10: Provide the means of
managing the installation of
scripts into the desktop.

(Increment #5)

T10.1: Create desktop files for scripts while
using the editor. (#5)

T10.2: Create menu entries for scripts and
categories of scripts while using the editor.
(#5)

T10.3: Install desktop files, menu entries
and scripts while using the editor. (#5)

T10.4: Remove desktop files, scripts and
menu entries while using the editor. (#5)

R27
R28
R29

T11: Provide a search
capability over the help text.

(Increment #4)

T11.1: Key word search over the help text of
prepared commands. (#4)

T11.2: Use the apropos command to search
for commands using a key word. (#4)

R32
R33

T12: Provide a tag:command
database where commands

T12.1: Adding, editing and removing
commands from the tag database. (#4)

18 VICI

Architecture Responsibilities

Req. Tactic Responsibilities

R34
R35
R36
R37

and tags can be classified
using other tags, and which
can be searched using set
expressions.

(Increment #4)

T12.2: Adding, editing and removing tags
from the tag database. (#4)

T12.3: Classifying commands and tags as
members of other tags. (#4)

T12.4: Saving and loading the tag database.
(#4)

T12.5: Defining the format of the tag
database. (#4)

T12.6: Construct a query based on union
and intersection of tags. (#4)

T12.7: Display list of commands that satisfy
a query. (#4)

R38
R39
R40
R41
R57
R58
R59
R63

T13: Provide a runtime
interpreter that can be
controlled down to individual
steps.

(Increment #1, #2)

T13.1: Construct an execution model for the
script based on the diagram. (#1)

T13.2: Create thread objects for each thread
of control in the script. (#1)

T13.3: Thread objects may wait for user
input before executing next command. (#2)

T13.4: Thread objects may wait for a
specified interval before executing next
command. (#2)

T13.5: Thread objects can be repositioned
to other locations in the execution model.
(#2)

T13.6: The execution model can be tagged
with break points that stop the thread
objects from proceeding until they have user
input. (#2)

T13.7: Create new thread objects when
starting a background function or command.
(#1)

T13.8: Determine which command to
execute next according to the execution
model and the exit status of the previous
command. (#1)

T13.9: The thread is to start one or more
process objects according to the execution
model. (#1)

T13.10: Terminate all threads when
processing completes. (#1)

R39
R42
R44
R45
R46
R47
R50

T14: Display the values for all
variables during testing.

(Increment #2)

T14.1: Display a representation of the thread
object on the diagram at its correct point in
the execution model. (#2)

T14.2: Allow user to specify the processing
speed. (#2)

T14.3: Display the value of each global
variable. (#2)

19 VICI

Architecture Responsibilities

Req. Tactic Responsibilities

T14.4: Allow user to select which threads to
display. (#2)

T14.5: Display the value of each thread
specific variable. (#2)

T14.6: Allow user to edit the value of
variables. (#2)

R43
R51

T15: Provide snapshot and
restore capability for testing.
(Increment TBA)

T15.1: Save and load for the variables.

T15.2: Define the format of the snapshot file.

T15.3: Allow user to define names for
snapshot files.

T15.4: Allow user to select files for inclusion
in the snapshot.

T15.5: Save and restore of snapshot files.

R48
R49

T16: Provide a file viewing
capability.
(Increment TBA)

T16.1: Display a list of the files referenced
by the script, including name, permissions,
and size.

T16.2: Provide windows that can be used to
display text files, or the tail thereof.

R52 T17: Provide a customisation
option for the diagram editor.

(Increment #7)

T17.1: Provide a logical to actual mapping
for the symbol attributes. (#7)

T17.2: Provide a palette of colours for the
symbol attributes. (#7)

T17.3: Provide a palette of patterns for the
arrows and lines. (#7)

T17.4: Provide a palette of textures for the
area symbols. (#7)

R53
R54

T18: Provide a user
configurable window
management system.

(Increment #7)

T18.1: Allow windows to be docked or
floating. (#7)

T18.2: Allow windows to be repositioned and
resized. (#7)

T18.3: Preserve user's settings. (#7)

T18.4: Provide an ability to reset windows to
a default state. (#7)

R60
R61
R62
R64
R65

T19: Provide a set of built-in
commands.

(Increment #1)

T19.1: Provide a cd command that changes
the working directory of a thread. (#1)

T19.2: Provide a “for each line” command.
(#1)

T19.3: Provide a “for each” command. (#1)

T19.4: Construct and remove named pipes.
(#1)

T19.5: Provide a signal command that sends
a signal to another process. (#1)

20 VICI

Architecture Responsibilities

Req. Tactic Responsibilities

R64
R66
R67

T20: Provide the ability to pipe
data between processes.

(Increment #1)

T20.1: Allow a pipe to be connected to a
named pipe. (#1)

T20.2: Allow a pipe to be connected to a file
in either append or over-write mode. (#1)

R68 T21: Provide an in-line file
capability with variable
expansion.

(Increment #1)

T21.1: Expand variables embedded in in-line
file. (#1)

R69 T22: Provide a clean up
function that removes
temporary objects.

(Increment #1)

T22.1: Remove temporary files. (#1)

R70
RQC2

T23: Provide a means of
automatically signing scripts
(Increment TBA)

T23.1: Sign a script when saving.

T23.2: Only allow a script to be opened if it
has been signed by an approved key, or the
user's key.

R71
R72
R73
R74
R75
R76
R77
R78
R79

T24: Support the use of
variables in the scripts.

(Increment #1)

T24.1: Assign the output of commands to
variables. (#1)

T24.2: Expand command lines with the
current value of variables. (#1)

T24.3: Perform arithmetic operations on
variables. (#1)

T24.4: Provide built in variables containing
process ids of background threads. (#1)

T24.5: Provide built in variables containing
the exit status of the previous command.
(#1)

T24.6: Provide thread specific built in
variables that are passed to functions as
parameters. (#1)

T24.7: Provide variables that represent the
text field for drag-n-drop.

T24.8: Provide mutex variables. (#1)

T24.9: Provide semaphore variables that
increments on receipt of a signal. (#1)

R80
R81
R82
R83
R84

T25: Provide a runtime
program for executing the
scripts.

(Increment #1)

T25.1: Provide a GUI program to run scripts.
(#1)

T25.2: Provide a directory selection dialog to
set the working directory. (#1)

T25.3: Provide a file selection dialog to
select the script to run. (#1)

21 VICI

Architecture Responsibilities

Req. Tactic Responsibilities

R85
R86
R87
R88

T25.4: Dynamically create the menu
according to the script. (#1)

T25.5: Dynamically create the text fields for
drag-n-drop.

T25.6: Provide a menu option that
terminates the running script. (#1)

T25.7: Dynamically create the text fields for
user input and script output and error
messages. (#1)

T25.8: Detect changes to drag-n-drop fields
and cause the script to start the appropriate
function.

T25.9: Pause and restart a running script.
(#1)

R89 T26: Provide a user interface
that allows the user to set a
crontab entry for a script.

(Increment #6)

T26.1: Allow the user to select the script to
be run. (#6)

T26.2: Update crontab (#6)

T26.3: Allow the user to define the schedule
for a script. (#6)

T26.4: Allow the user to remove a crontab
entry for a script. (#6)

 3.2 Environmental Requirements

Req. Tactic Responsibilities

RE1
RE2

T27: Build using open source
and cross-platform capable
components.

(All Increments)

T27.1: Verify license of each component.

RE1 T28: Build using autotools.
(All Increments)

T28.1: Use autotools.

RE1 T29: Verify freedesktop
compatibility.
(All increments from #5)

T29.1: Verify the system uses the
freedesktop structure.

22 VICI

Architecture Responsibilities

 3.3 Quality Requirements

Req. Tactic Responsibilities

RQC3 T30: Use the Qt framework for
GUI components.
(All increments)

T30.1: Selection of Qt libraries.

T31: Hide UI components until
they are needed.
(from Increment #7)

T31.1: Manage the display of windows and
other GUI components according to the
actions being performed.

RQC4 T32: Use event driven design.
(rather than polling)
(All increments)

T32.1: Rejection of any component that
includes polling or other “busy-wait”
mechanisms.

RQC5 T33: Use clear and
informative error messages.
(All increments)

T33.1: Easy to understand messages.

T33.2: Guidance on resolution is included.

RQC6 T34: No privileged
components will be allowed.
(All increments)

T34.1: There are no components of the
system that have anything other than the
user's privileges.

RQC7
RQD6

T35: Provide comprehensive
administration guides, user
guides and tutorials.
(Increment TBA)

T35.1: Write the guides and tutorials.

T35.2: Verify that the guides are appropriate

T36: Provide video guides
illustrating the complete
process of building, installing
and running a script.
(Increment TBA)

T36.1: Create a video tutorial.

RQC8
RQT7
RQP1

T37: Use a software
engineering approach to the
construction.
(All increments)

T37.1: Define the tasks required to complete
the project.

T38: Use a test driven
development methodology.
(All increments)

T38.1: Build test harnesses for interfaces.

T38.2: Build test harnesses for component
modules.

RQD1 T48: Provide Linux standard
packages.
(Increment TBA)

T48.1: Provide an rpm package.

T48.2: Provide a deb package.

RQD2 T39: Provide a script that
promotes scripts to an
administrator's site key.
(Increment TBA)

T39.1: Provide a promotion script.

RQD4
RQD5
RQT6

T40: Use XML for persistent
storage and configuration.
(All increments)

T40.1: Verify persistent storage is XML.

RQD7 T41: Review design for
unnecessary libraries.
(All increments)

T41.1: Conduct design reviews.

23 VICI

Architecture Responsibilities

Req. Tactic Responsibilities

RQT1 T42: Use an object oriented
language.
(All increments)

T42.1: Select appropriate language.

RQT2
RQT3
RQT4
RQT5
RQS4

T43: Provide clear guidelines
and coding standards.
(All increments)

T43.1: Specify the coding standards.

T43.2: Specify the guidelines for code level
documentation.

T43.3: Specify the guidelines for making the
software locale independent.

T43.4: Conduct reviews of the code.

RQS1 T44: The static design will
include class diagrams
showing the relationships
between the classes.
(All increments)

T44.1: Construct class diagrams.

T44.2: Conduct design reviews.

T45: The dynamic design will
include automatically
generated collaboration
diagrams generated from
trace information.
(All increments)

T45.1: Include trace code.

T45.2: Generate trace logs.

T45.3: Generate collaboration diagrams.

RQS2 T46: The system will include
Makefiles and configure
scripts.
(All increments)

T46.1: Create configure and make scripts.

RQS5
RQS6
RQS7

T47: The system will be
created from separately
constructed modules.
(All increments)

T47.1: Create a modular design.

T47.2: Review design for unnecessary
interactions between modules.

24 VICI

Architecture Conceptual Model

 4 Conceptual Model
This section allocates the responsibilities from the previous section to
conceptual modules. This provides the basic structure to the design of the
system.

 4.1 Process Tasks

Some responsibilities are handled by the development process rather than the
constructed system. This section lists the tasks necessary to satisfy the process
responsibilities.

 4.1.1 Architecture

This task involves defining the high level design of the system and setting the
policies and guidelines for the remainder of the project. It also includes:

T37.1: Define the tasks required to complete the project.

T42.1: Select appropriate language.

T43.1: Specify the coding standards.

T43.2: Specify the guidelines for code level documentation.

T43.3: Specify the guidelines for making the software locale
independent.

T47.1: Create a modular design.

 4.1.2 Interface Stubs

This task involves creating stub versions of the interfaces between each
component so that they may each be tested in isolation.

T38.1: Build test harnesses for interfaces.

 4.1.3 Component Exploration

This task involves becoming familiar with the third party products that have
been selected for the project.

 4.1.4 Test Planning

Describe how the testing will be organised and what testing is proposed for the
project. For this project there will be sections for system testing and unit
testing.

 4.1.5 Application Design

This task is responsible for creating the class diagrams that define the structure
of the application programs. It includes:

25 VICI

Architecture Conceptual Model

T44.1: Construct class diagrams.

 4.1.6 User Interface Design

This task is responsible for creating the layout of the visual components of the
application programs.

 4.1.7 Use Case Design

This task involves defining the sequence of events that the classes generate as
each use case is processed.

 4.1.8 Persistent Storage Design

We need to define the format, and rules, that apply to the storage of the
application's data. This usually involves experts in the storage component, and
can to some extent be started prior to the application specific work. It will
usually involve creating some additional classes to interface the application
specific classes to the storage mechanisms.

The following responsibilities can be assigned to this task:

T1.12: Define the format of the XML file for commands.

T3.11: Define the format of the XML file for the diagram.

T12.5: Defining the format of the tag database.

T15.2: Define the format of the snapshot file.

 4.1.9 Test Case Design and Implementation

This task involves creating the unit test harnesses so that we have something to
test against when we do the implementation.

 4.1.10 Class Design

This task involves creating the interfaces for each class and defining the
actions for each method.

 4.1.11 Design Review

This task is responsible for ensuring that the design conforms to the policies
and guidelines established for the project. It includes the following
responsibilities:

T27.1: Verify license of each component.

T30.1: Selection of Qt libraries.

T40.1: Verify persistent storage is XML.

T41.1: Conduct design reviews focussing on finding unnecessary

26 VICI

Architecture Conceptual Model

components..

T44.2: Conduct design reviews focussing on ease of understanding.

T47.2: Review design for unnecessary interactions between modules.

 4.1.12 Implementation

This is the task responsible for building the system. It includes the following
responsibilities:

T28.1: Use autotools.

T38.2: Build test harnesses for component modules.

T39.1: Provide a promotion script.

T45.1: Include trace code.

T46.1: Create configure and make scripts.

 4.1.13 Code Review

This Task is responsible for ensuring that the code conforms to the standards,
policies and guidelines established for the project. It includes the following
specific responsibilities:

T32.1: Rejection of any component that includes polling or other
“busy-wait” mechanisms.

T33.1: Easy to understand messages.

T33.2: Guidance on resolution is included.

T34.1: There are no components of the system that have anything other
than the user's privileges.

T43.4: Conduct reviews of the code.

 4.1.14 Configuration Preparation

This task is responsible for preparing the configuration data that is required for
the correct operation of the system.

T2.1...T2.107: Prepare the commands.

 4.1.15 Documentation

This task is responsible for preparing the deliverable documentation for the
project. It includes:

T35.1: Write the guides and tutorials.

T36.1: Create a video tutorial.

T45.2: Generate trace logs.

T45.3: Generate collaboration diagrams.

27 VICI

Architecture Conceptual Model

 4.1.16 Documentation Review

This task involves verifying that the documentation is up to standard. It
includes:

T35.2: Verify that the guides are appropriate

 4.1.17 Testing

This task is responsible for verifying that each use case can be successfully
completed.

 4.1.18 Packaging

This task is responsible for creating a package that can be easily installed on a
user's computer.

T2.108: Arrange for the prepared commands to be included in the
distributed package.

T29.1: Verify the system uses the freedesktop structure.

T48.1: Provide an rpm package.

T48.2: Provide a deb package.

 4.1.19 Integration Testing

This task is responsible for ensuring that the product can be successfully
installed and run on a user's machine.

 4.2 Components

These are the conceptual modules that will be the basis for the implementation
modules that will make up the delivered product.

 4.2.1 Administration GUI

This component will allow an administrative user to configure the application,
prepare commands and to promote scripts for site wide use. It has the
following responsibilities:

T1.1: Collect the name of the command.

T1.2: Collect the syntax of the options.

T1.3: Collect a short description of the command.

T1.4: Collect the commands to show the help documentation.

T1.5: Construct an XML document from the user input.

T1.6: Save the XML document to disk.

T1.7: Load the XML document from disk.

28 VICI

Architecture Conceptual Model

T1.8: Restore user entered data from the XML document.

T1.9: Generate a syntax diagram for the command.

T1.10: Validate the EBNF of the option syntax.

T1.11: Collect a name and some options to be used as an alias
command.

T1.13: Export selected commands to an XML file.

T1.14: Import commands from an XML file.

 4.2.2 Graphical Script Editor

This component allows the user to create and edit a script using a graphical
flowchart like interface. It has the following responsibilities:

T3.1: Display a set of flowchart symbols in a palette. See Appendix C
of the Requirements document.

T3.2: Indicate a default symbol on the palette.

T3.3: Place default symbol on diagram.

T3.4: Create a new empty diagram.

T3.5: Indicate a symbol has been selected.

T3.6: Move selected symbols to new positions on the diagram
following the mouse.

T3.7: Keep lines connected to other symbols.

T3.8: Remove deleted symbols.

T3.9: Save the flowchart as an XML file.

T3.10: Reconstruct a chart from the contents of an XML file.

T3.12: Record the user name in the script.

T3.13: Create backups automatically.

T8.1: Create a description of the diagram in the language of the layout
program.

T8.2: Execute the layout program.

T8.3: Update the layout of a diagram based on the results from a layout
program.

T8.4: Revert the layout to the previous arrangement when directed to
by the user.

T9.1: Provide a palette of text attributes.

T9.2: Collect the text from the user and place it on the diagram.

T9.3: Save the text, its location and attributes, into the diagram XML
file.

29 VICI

Architecture Conceptual Model

T9.4: Restore the text to the diagram from an XML file.

T9.5: Allow the user to edit the text, or its attributes.

T9.6: Allow the removal of text from a diagram.

T4.1: Display a list of prepared commands.

T4.2: Attach the selected command to the selected symbol.

T4.3: Verify the selected command is appropriate for the selected
symbol.

T4.5: Collect a command and its options and attach it to the selected
symbol.

T5.1: Provide a window for displaying help text.

T5.2: Display the short description of prepared commands.

T5.3: Display the results of running the help command for prepared
commands.

T5.4: Display the man page for non-prepared commands.

T5.5: Display the info page for the selected command.

T6.1: Display the syntax chart for the command.

T6.2: Display the set of options and parameters available for the
command.

T6.3: Display the set of variables that are defined.

T6.4: Indicate which options and parameters are legal at the current
point in the command.

T6.5: Build a command line for the command from the user's selection
of options and parameters.

T7.1: Replace a group of symbols with a function symbol and place the
group of symbols onto a new diagram.

T7.2: Allow the user to define the name of a function.

T7.3: Allow the user to attach a function to a menu item.

T7.4: Allow user to arrange menu items.

T14.1: Display a representation of the thread object on the diagram at
its correct point in the execution model.

T14.2: Allow user to specify the processing speed.

T14.3: Display the value of each global variable.

T14.4: Allow user to select which threads to display.

T14.5: Display the value of each thread specific variable.

T14.6: Allow user to edit the value of variables.

T15.1: Save and load for the variables.

30 VICI

Architecture Conceptual Model

T15.3: Allow user to define names for snapshot files.

T15.4: Allow user to select files for inclusion in the snapshot.

T15.5: Save and restore of snapshot files.

T16.1: Display a list of the files referenced by the script, including
name, permissions, and size.

T16.2: Provide windows that can be used to display text files, or the tail
thereof.

T17.1: Provide a logical to actual mapping for the symbol attributes.

T17.2: Provide a palette of colours for the symbol attributes.

T17.3: Provide a palette of patterns for the arrows and lines.

T17.4: Provide a palette of textures for the area symbols.

T18.1: Allow windows to be docked or floating.

T18.2: Allow windows to be repositioned and resized.

T18.3: Preserve user's settings.

T18.4: Provide an ability to reset windows to a default state.

T31.1: Manage the display of windows and other GUI components
according to the actions being performed.

 4.2.3 Layout Program

This is a component which takes a description of the nodes and edges of a
graph and calculates the optimum layout.

 4.2.4 Desktop Installer

This component is responsible for installing scripts onto the user's desktop, and
removing them when they are no longer required. It has the following
responsibilities:

T10.1: Create desktop files for scripts while using the editor.

T10.2: Create menu entries for scripts and categories of scripts while
using the editor.

T10.3: Install desktop files, menu entries and scripts while using the
editor.

T10.4: Remove desktop files, scripts and menu entries while using the
editor.

 4.2.5 Command Search Facility

This component allows the user to find commands for whatever task they have
in mind. It has the following responsibilities:

31 VICI

Architecture Conceptual Model

T11.1: Key word search over the help text of prepared commands.

T11.2: Use the apropos command to search for commands using a key
word.

T12.1: Adding, editing and removing commands from the tag database.

T12.2: Adding, editing and removing tags from the tag database.

T12.3: Classifying commands and tags as members of other tags.

T12.4: Saving and loading the tag database.

T12.5: Defining the format of the tag database.

T12.6: Construct a query based on union and intersection of tags.

T12.7: Display list of commands that satisfy a query.

 4.2.6 Script Interpreter

This component executes the scripts by determining which commands to
execute based on the exit status of the previous commands. It is used by both
the Script Runtime component and the Graphical Script Editor. It has the
following responsibilities:

T13.1: Construct an execution model for the script based on the
diagram.

T13.2: Create thread objects for each thread of control in the script.

T13.3: Thread objects may wait for user input before executing next
command.

T13.4: Thread objects may wait for a specified interval before
executing next command.

T13.5: Thread objects can be repositioned to other locations in the
execution model.

T13.6: The execution model can be tagged with break points that stop
the thread objects from proceeding until they have user input.

T13.7: Create new thread objects when starting a background function
or command.

T13.8: Determine which command to execute next according to the
execution model and the exit status of the previous command.

T13.9: The thread is to start one or more process objects according to
the execution model.

T13.10: Terminate all threads when processing completes.

T19.1: Provide a cd command that changes the working directory of a
thread.

T19.2: Provide a “for each line” command.

32 VICI

Architecture Conceptual Model

T19.3: Provide a “for each” command.

T19.4: Construct and remove named pipes.

T19.5: Provide a signal command that sends a signal to another
process.

T20.1: Allow a pipe to be connected to a named pipe.

T20.2: Allow a pipe to be connected to a file in either append or over-
write mode.

T21.1: Expand variables embedded in in-line file.

T22.1: Remove temporary files.

T24.1: Assign the output of commands to variables.

T24.2: Expand command lines with the current value of variables.

T24.3: Perform arithmetic operations on variables.

T24.4: Provide built in variables containing process ids of background
threads.

T24.5: Provide built in variables containing the exit status of the
previous command.

T24.6: Provide thread specific built in variables that are passed to
functions as parameters.

T24.7: Provide variables that represent the text field for drag-n-drop.

T24.8: Provide mutex variables.

T24.9: Provide semaphore variables that increments on receipt of a
signal.

 4.2.7 Script Runtime

This component provides the user interface around the script interpreter
component. It has the following responsibilities:

T25.1: Provide a GUI program to run scripts.

T25.2: Provide a directory selection dialog to set the working directory.

T25.3: Provide a file selection dialog to select the script to run.

T25.4: Dynamically create the menu according to the script.

T25.5: Dynamically create the text fields for drag-n-drop.

T25.6: Provide a menu option that terminates the running script.

T25.7: Dynamically create the text fields for user input and script
output and error messages.

T25.8: Detect changes to drag-n-drop fields and cause the script to start
the appropriate function.

33 VICI

Architecture Conceptual Model

T25.9: Pause and restart a running script.

 4.2.8 Secure Signing Facility

This component is responsible for creating a secure signature for a script, and
confirming that a script has an approved key. It has the following
responsibilities:

T23.1: Sign a script when saving.

T23.2: Only allow a script to be opened if it has been signed by an
approved key, or the user's key.

 4.2.9 Graphical Crontab Editor

This component is responsible for allowing the user to set up crontab entries
for their scripts. It has the following responsibilities:

T26.1: Allow the user to select the script to be run.

T26.2: Update crontab

T26.3: Allow the user to define the schedule for a script.

T26.4: Allow the user to remove a crontab entry for a script.

34 VICI

Figure 1: Conceptual Model

Architecture Logical Model

 5 Logical Model
A logical architecture has a focus on design of component interactions,
connection mechanisms and protocols, interface design and specification, and
providing contextual information for component users.

 5.1 Implementation Modules

This section describes the components as they are to be implemented. It breaks
out the programs, libraries and persistent data stores into separate components.

 5.1.1 The vici-adm Program

This program provides the user interface for the administration of the VICI
system. It is part of the Administration GUI conceptual component that
addresses the following responsibilities:

T1.1: Collect the name of the command.

T1.2: Collect the syntax of the options.

T1.3: Collect a short description of the command.

T1.4: Collect the commands to show the help documentation.

T1.5: Construct an XML document from the user input.

T1.8: Restore user entered data from the XML document.

T1.11: Collect a name and some options to be used as an alias
command.

T1.13: Export selected commands to an XML file.

T1.14: Import commands from an XML file.

This component will use the libxml2 library to load and save the XML, an
EBNF parser to validate the EBNF, and a syntax chart generator to create the
syntax diagrams. It will have the following derived responsibilities:

1. Collect the EBNF for the command's options.

2. Display the syntax chart for the command's options.

The component will be developed during increment #3.

 5.1.2 The vici-cmd Database

This will be an XML file containing the prepared commands. It will be written
under the control of vici-adm and read by vici-ed.

The component will be developed during increment #3.

35 VICI

Architecture Logical Model

 5.1.3 The libcfi Library

This is a library of common facilities infrastructure components. It includes a
useful exception class, logging, configuration data access and tracing. It also
includes a C++ wrapper around the general purpose C XML library.

It addresses the following responsibilities:

T1.6: Save the XML document to disk.

T1.7: Load the XML document from disk.

T1.13: Exporting commands.

T1.14: Importing commands.

T3.9: Save the flowchart as an XML file.

T3.10: Reconstruct a chart from the contents of an XML file.

T12.4: Saving and loading the tag database.

T45.1: Include trace code.

T45.2: Generate trace logs.

The component will be developed during increment #1.

 5.1.4 The trc2dot Program

This program uses the trace logs to generate a file for the GraphViz dot
program. This is used to generate the collaboration diagrams for the design
documents. It addresses the following responsibilities:

T45.3: Generate collaboration diagrams.

The component will be developed during increment #1.

 5.1.5 The libxml2 Library

This is a third party component that provides the ability to save and load XML
files. It addresses the following responsibilities:

T1.6: Save the XML document to disk.

T1.7: Load the XML document from disk.

T1.13: Exporting commands.

T1.14: Importing commands.

T3.9: Save the flowchart as an XML file.

T3.10: Reconstruct a chart from the contents of an XML file.

T12.4: Saving and loading the tag database.

36 VICI

Architecture Logical Model

 5.1.6 The libebnf Library

This library will be responsible for parsing an EBNF specification for the
options of a command. It addresses the following responsibilities:

T1.10: Validate the EBNF of the option syntax.

In addition it will also address the following derived responsibilities:

1. Validate the options for a command against a provided EBNF.

2. Provide a list of valid next symbols for a partial option list for a
specific command.

The component will be developed during increment #3.

 5.1.7 The libsyntax Library

This library will be responsible for displaying a syntax chart for the EBNF of a
given command. It addresses the following responsibilities:

T1.9: Generate a syntax diagram for the command.

The component will be developed during increment #3.

 5.1.8 The libcc Library

This is a library of objects that are passed around between the major
components. Such objects are sometimes known as currency classes, hence the
libcc name. It provides a common implementation for objects which appear on
the interfaces between modules, such as windows passed as parameters or
parse trees passed to the syntax library.

The component will be developed during increment #1.

 5.1.9 The libQtGui Library

This third party library will provide the user interface components for the VICI
project.

 5.1.10 The libQtCore Library

This third party library will provide various components including one that
wraps a running process which will form the basis of the interpreter.

 5.1.11 The symbol Library

This component is responsible for the symbols used on the flowchart diagrams.
It addresses the following responsibilities:

T3.1: Display a set of flowchart symbols in a palette. See Appendix C
of the Requirements document.

37 VICI

Architecture Logical Model

T3.2: Indicate a default symbol on the palette.

T17.1: Provide a logical to actual mapping for the symbol attributes.

T17.2: Provide a palette of colours for the symbol attributes.

T17.3: Provide a palette of patterns for the arrows and lines.

T17.4: Provide a palette of textures for the area symbols

T9.1: Provide a palette of text attributes.

It will also have the derived responsibilities:

1. Drawing the symbols on the provided canvas.

The component will be developed during increment #1.

 5.1.12 The canvas Library

This library will be responsible for allowing the user to draw their diagrams. It
addresses the following responsibilities:

T3.3: Place default symbol on diagram.

T3.5: Indicate a symbol has been selected.

T3.6: Move selected symbols to new positions on the diagram
following the mouse.

T3.7: Keep lines connected to other symbols.

T3.8: Remove deleted symbols.

T3.9: Save the flowchart as an XML file.

T3.10: Reconstruct a chart from the contents of an XML file.

T8.1: Create a description of the diagram in the language of the layout
program.

T8.2: Execute the layout program.

T8.3: Update the layout of a diagram based on the results from a layout
program.

T8.4: Revert the layout to the previous arrangement when directed to
by the user.

T7.1: Replace a group of symbols with a function symbol and place the
group of symbols onto a new diagram.

T7.2: Allow the user to define the name of a function.

T9.2: Collect the text from the user and place it on the diagram.

T9.3: Save the text, its location and attributes, into the diagram XML
file.

T9.4: Restore the text to the diagram from an XML file.

38 VICI

Architecture Logical Model

T9.5: Allow the user to edit the text, or its attributes.

T9.6: Allow the removal of text from a diagram.

The component will be developed during increment #1. The automatic layout
functionality will be added in a future increment TBA.

 5.1.13 The GraphViz dot Program

This third party program can be used to calculate the layout for a diagram. It
implements the Layout Program component of the conceptual design.

 5.1.14 The command Library

This component provides the user interface for the command selection and
parameter entry functions for the vici-ed program. It has the following
responsibilities:

T4.1: Display a list of prepared commands.

T4.2: Attach the selected command to the selected symbol.

T4.3: Verify the selected command is appropriate for the selected
symbol.

T4.5: Collect a command and its options and attach it to the selected
symbol.

T5.1: Provide a window for displaying help text.

T5.2: Display the short description of prepared commands.

T5.3: Display the results of running the help command for prepared
commands.

T5.4: Display the man page for non-prepared commands.

T5.5: Display the info page for the selected command.

T6.1: Display the syntax chart for the command.

T6.2: Display the set of options and parameters available for the
command.

T6.4: Indicate which options and parameters are legal at the current
point in the command.

T6.5: Build a command line for the command from the user's selection
of options and parameters.

The component will be developed during increment #3.

 5.1.15 The vici-ed Program

The program provides the user interface for the VICI script editor. It is part of
the Graphical Script Editor conceptual component. It addresses the following
responsibilities:

39 VICI

Architecture Logical Model

T3.4: Create a new empty diagram.

T3.12: Record the user name in the script.

T3.13: Create backups automatically.

T7.3: Allow the user to attach a function to a menu item.

T7.4: Allow user to arrange menu items.

T14.1: Display a representation of the thread object on the diagram at
its correct point in the execution model.

T14.2: Allow user to specify the processing speed.

T14.4: Allow user to select which threads to display.

T18.1: Allow windows to be docked or floating.

T18.2: Allow windows to be repositioned and resized.

T18.3: Preserve user's settings.

T18.4: Provide an ability to reset windows to a default state.

T31.1: Manage the display of windows and other GUI components
according to the actions being performed.

T6.3: Display the set of variables that are defined.

T14.3: Display the value of each global variable.

T14.5: Display the value of each thread specific variable.

T14.6: Allow user to edit the value of variables.

T15.1: Save and load for the variables.

T15.3: Allow user to define names for snapshot files.

T15.4: Allow user to select files for inclusion in the snapshot.

T15.5: Save and restore of snapshot files.

T16.1: Display a list of the files referenced by the script, including
name, permissions, and size.

T16.2: Provide windows that can be used to display text files, or the tail
thereof.

The component will begin development during increment #1. It will extended
in subsequent increments.

 5.1.16 The installer Library

This component is responsible for allowing the user of vici-ed to install (or
remove) scripts from their desktop. It addresses the following responsibilities:

T10.1: Create desktop files for scripts while using the editor.

T10.2: Create menu entries for scripts and categories of scripts while
using the editor.

40 VICI

Architecture Logical Model

T10.3: Install desktop files, menu entries and scripts while using the
editor.

T10.4: Remove desktop files, scripts and menu entries while using the
editor.

The component will be developed during increment #5.

 5.1.17 The search Library

This component allows the user to find commands for whatever task they have
in mind. It addresses the following responsibilities:

T11.1: Key word search over the help text of prepared commands.

T11.2: Use the apropos command to search for commands using a key
word.

T12.1: Adding, editing and removing commands from the tag database.

T12.2: Adding, editing and removing tags from the tag database.

T12.3: Classifying commands and tags as members of other tags.

T12.4: Saving and loading the tag database.

T12.5: Defining the format of the tag database.

T12.6: Construct a query based on union and intersection of tags.

T12.7: Display list of commands that satisfy a query.

The component will be developed during increment #4.

 5.1.18 The tag Database

This database component provides the persistent storage for the classification
of commands.

The component will be developed during increment #4.

 5.1.19 The libvici Library

This component executes the scripts by determining which commands to
execute based on the exit status of the previous commands. It is used by both
the vici program and the vici-ed program. It addresses the following
responsibilities:

T13.1: Construct an execution model for the script based on the
diagram.

T13.2: Create thread objects for each thread of control in the script.

T13.3: Thread objects may wait for user input before executing next
command.

T13.4: Thread objects may wait for a specified interval before
executing next command.

41 VICI

Architecture Logical Model

T13.5: Thread objects can be repositioned to other locations in the
execution model.

T13.6: The execution model can be tagged with break points that stop
the thread objects from proceeding until they have user input.

T13.7: Create new thread objects when starting a background function
or command.

T13.8: Determine which command to execute next according to the
execution model and the exit status of the previous command.

T13.9: The thread is to start one or more process objects according to
the execution model.

T13.10: Terminate all threads when processing completes.

T19.1: Provide a cd command that changes the working directory of a
thread.

T19.2: Provide a “for each line” command.

T19.3: Provide a “for each” command.

T19.4: Construct and remove named pipes.

T19.5: Provide a signal command that sends a signal to another
process.

T20.1: Allow a pipe to be connected to a named pipe.

T20.2: Allow a pipe to be connected to a file in either append or over-
write mode.

T21.1: Expand variables embedded in in-line file.

T22.1: Remove temporary files.

T24.1: Assign the output of commands to variables.

T24.2: Expand command lines with the current value of variables.

T24.3: Perform arithmetic operations on variables.

T24.4: Provide built in variables containing process ids of background
threads.

T24.5: Provide built in variables containing the exit status of the
previous command.

T24.6: Provide thread specific built in variables that are passed to
functions as parameters.

T24.7: Provide variables that represent the text field for drag-n-drop.

T24.8: Provide mutex variables.

T24.9: Provide semaphore variables that increments on receipt of a
signal.

42 VICI

Architecture Logical Model

The component will be developed during increment #1. Some responsibilities
will be done in subsequent increments.

 5.1.20 The vici Program

This component provides the user interface around the libvici component. It
addresses the following responsibilities:

T25.1: Provide a GUI program to run scripts.

T25.2: Provide a directory selection dialog to set the working directory.

T25.3: Provide a file selection dialog to select the script to run.

T25.4: Dynamically create the menu according to the script.

T25.5: Dynamically create the text fields for drag-n-drop.

T25.6: Provide a menu option that terminates the running script.

T25.7: Dynamically create the text fields for user input and script
output and error messages.

T25.8: Detect changes to drag-n-drop fields and cause the script to start
the appropriate function.

T25.9: Pause and restart a running script.

The component will be developed during increment #1. Some responsibilities
will be done in subsequent increments.

 5.1.21 The libsecure Library

This component is responsible for creating a secure signature for a script, and
confirming that a script has an approved key. It addresses the following
responsibilities:

T23.1: Sign a script when saving.

T23.2: Only allow a script to be opened if it has been signed by an
approved key, or the user's key.

The component will be developed during an increment TBA.

 5.1.22 The libcron Library

This component is responsible for allowing the user to set up crontab entries
for their scripts. It addresses the following responsibilities:

T26.1: Allow the user to select the script to be run.

T26.2: Update crontab

T26.3: Allow the user to define the schedule for a script.

T26.4: Allow the user to remove a crontab entry for a script.

43 VICI

Architecture Logical Model

The component will be developed during increment #6.

 5.1.23 The libifstubs Library

This is a temporary library providing some scaffolding for the construction
process. It allows us to build each module in isolation. Without it we would
need to build the components in order of their dependencies, which is not
always a possibility. It addresses the following responsibilities:

T38.1: Build test harnesses for interfaces.

T38.2: Build test harnesses for component modules.

The component will be developed during increment #1.

44 VICI

Figure 2: Administration - Logical Diagram

Architecture Logical Model

45 VICI

Figure 3: Chart Editor - Logical Diagram

Figure 4: Run Time - Logical Diagram

Architecture Interfaces

 6 Interfaces
This section describes the interfaces between the components of the system,
and between the system and the outside world.

Defining the interfaces in detail allows us to develop the modules
independently – changes to the internals of one module will not usually have
any impact on the other modules. The alternative can lead to chaotic behaviour
in the development process.

An important consideration when documenting the interfaces is to ensure that
data is conserved – that all the data that a component requires, or transmits to
other components, is provided to it.

 6.1 External Interfaces

These are the interfaces between the system and external objects or the
system's users.

 6.1.1 IF01 Vici Admin UI

This is the graphical interface that allows an administrative user to interact
with the vici-adm program.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a
Pointer.

Content: 1. Command name. (I)
2. Option syntax as EBNF text. (I)
3. Command short description. (I)
4. Help command. (I)
5. Alias name (optional) (I)
6. Error messages (O)
7. Status information (O)

 6.1.2 IF02 Syntax Chart

This is an interface that displays a syntax chart in a window.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a
Pointer.

Content: 1. Syntax diagram (O)

46 VICI

Architecture Interfaces

 6.1.3 IF03 Symbol Palette

This is the graphical interface that allows a user to select and configure the
symbols used on the flowchart diagrams.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a
Pointer.

Content: 1. Palette of flowchart symbols. (O)
2. Indication of currently selected symbol. (O)
3. Palette of colours. (O)
4. Palette of line patterns. (O)
5. Palette of textures. (O)
6. Palette of text attributes. (O)
7. User selected colour. (I)
8. User selected line pattern. (I)
9. User selected texture. (I)
10. User selected text attributes. (I)

 6.1.4 IF04 Canvas UI

This is the user interface for the canvas, the component responsible for
allowing the user to create and edit the diagrams.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a
Pointer.

Content: 1. Flowchart diagram. (O)
2. Current selected symbols. (O)
3. User symbol selection. (I)
4. Desired position of symbol(s). (I)
5. User edit action (I)
6. Name of function. (I/O)
7. User text (I/O)
8. Location of execution points (O)

 6.1.5 IF05 Command UI

This is the user interface that allows a user to select a command and set its
options and parameters.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a
Pointer.

Content: 1. Prepared Command List (O)
2. User command selection (I)

47 VICI

Architecture Interfaces

3. User suggested command and options. (I)
4. Short description of a prepared command (O)
5. Use selection of type of help text. (I)
6. Help text. (O)
7. Option and parameter list (O)
8. User option or parameter selection. (I)
9. Command line (I/O)

 6.1.6 IF06 Vici Editor UI

This is the user interface that allows a user to interact with the editor.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a
Pointer.

Content: 1. File name (I)
2. Menu name (I)
3. Function selection (I)
4. Processing delays (I)
5. Function test action (I)
6. Thread list (O)
7. Thread selection (I)
8. Window arrangement (I/O)
9. Global variable list (I/O)
10. Thread variable list (I/O)
11. Snapshot file name (I)
12. File list (O)
13. File selection (I)
14. File attributes (O)
15. File contents (O)

 6.1.7 IF07 Installer UI

This is the user interface that allows the user to manage the installation of their
scripts onto their desktop.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a
Pointer.

Content: 1. Category list (O)
2. Category name (I)
3. Category selection (I)
4. Menu list (O)
5. Menu name (I)

48 VICI

Architecture Interfaces

6. Menu selection (I)
7. Edit action (I)

 6.1.8 IF51 Installing Scripts onto Desktop

This is the interface between the Installer component and the user's desktop
files and directories.

Transport Medium: File System

Protocol: C Function calls

Content: 1. Lists of categories (O)
2. Menu files (I)

 6.1.9 IF08 Search UI

This is the user interface that allows a user to search for a command.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a
Pointer.

Content: 1. Search key (I)
2. Search method (I)
3. Search results (O)
4. Command selection (I)
5. Tag name (I)
6. Classification (I)
7. Tag selection (I)

 6.1.10 IF09 Command Execution

This is the interface between the shell interpreter and the underlying operating
system.

Transport Medium: Memory.

Protocol: The exec system call.

Content: 1. Command (O)
2. Option string list (O)
3. Environment strings. (O)
4. Standard input pipe (O)
5. Standard output pipe (I)
6. Standard error pipe (I)
7. Signals (O)

49 VICI

Architecture Interfaces

8. Exit status (I)

 6.1.11 IF10 Vici Runtime

This is the user interface that allows the user to interact with a running script.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a
Pointer.

Content: 1. Directory selection (I)
2. File selection (I)
3. Function menu (O)
4. Menu selection (I)
5. Text input (I)
6. Text output (O)
7. Error output (O)
8. Drag-n-drop input (I)

 6.1.12 IF11 Cron Interface

This is a user interface that allows the user to schedule a script to start at a
specific time.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a
Pointer.

Content: 1. Script list (O)
2. Script selection (I)
3. Schedule input (I)
4. Status (O)

 6.2 Internal Interfaces

These are the interfaces between the components of the system.

 6.2.1 IF12 Vici-adm to libebnf

This is the interface between the vici-adm program and the libebnf library.

Transport Medium: Memory

Protocol: C++ function calls.

50 VICI

Architecture Interfaces

Content: 1. Confirm option specification is a valid EBNF.
2. Advise the location and nature of any

detected error in the EBNF.

 6.2.2 IF13 Vici-adm to libsyntax

This is the interface the administration program uses to generate a syntax
chart.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. The sub-window to display into (I)
2. The EBNF of the command (I)

 6.2.3 IF14 libsyntax to libebnf

The libsyntax library uses libebnf to parse the EBNF and return a parse
structure that it uses to construct the visual representation.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Request the parsing of an EBNF string
returning a pointer to a parse tree data
structure.

 6.2.4 IF15 libxml2 to Command Database

This captures the reading and writing of the prepared commands by the vici-
adm program.

Transport Medium: File System

Protocol: XML

Content: 1. An XML file containing the specifications for
the prepared commands. (I/O)

 6.2.5 IF16 Vici-adm using libcfi

This is the interface between our vici-adm program and the XML wrapper
library used to read and write XML.

Transport Medium: Memory

51 VICI

Architecture Interfaces

Protocol: C++ function calls.

Content: 1. Create an XML document structure.
2. Add nodes to the document.
3. Add properties to nodes.
4. Save the document.
5. Read an XML file
6. Get nodes from the document
7. Remove nodes from the document.
8. Get properties from the document node.

 6.2.6 IF52 libcfi using libxml2

This is the interface between our wrapper and the third party XML library.

Transport Medium: Memory

Protocol: C function calls.

Content: 1. Create an XML document structure.
2. Add nodes to the document.
3. Add properties to nodes.
4. Save the document.
5. Read an XML file
6. Get nodes from the document
7. Remove nodes from the document.
8. Get properties from the document node.

 6.2.7 IF17 Vici-adm using libQtGui

This is the interface between our vici-adm program and the third party library
responsible for the graphical interface.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Create and remove a main window.
2. Menu options.
3. Text entry and display widgets.
4. Sub-windows.

 6.2.8 IF18 Vici-ed using Symbol

This is the interface between then vici-ed program and the component
responsible for managing and displaying the symbols used on the flowchart.

Transport Medium: Memory

Protocol: C++ function calls, Qt signals and slots.

52 VICI

Architecture Interfaces

Content: 1. Sub-window in which it the symbol library
uses to display its visual components. (I)

2. Signal that indicates a change of selected
symbol. (I/O)

3. Attributes of text and symbols. (O)

 6.2.9 IF19 Canvas using Symbol

This is the interface between the Canvas component and the Symbol
component.

Transport Medium: Memory

Protocol: C++ function calls., Qt signals and slots

Content: 1. Drawing surface (I)
2. Position of required symbol (I)
3. Currently selected symbol (O)
4. Attributes of text and symbols. (O)

 6.2.10 IF20 Vici-ed using Canvas

This is the interface between then vici-ed program and the component
responsible for the layout and display of the diagram.

Transport Medium: Memory

Protocol: C++ function calls, Qt signals and slots.

Content: 1. Sub-window for the canvas to use. (I)
2. Menu actions. (I)
3. Command descriptions (I)
4. Currently selected symbol. (O)
5. Thread execution point. (I)

 6.2.11 IF21 Canvas using GraphViz dot

This is the interface between the component responsible for the layout and
display of a the diagrams and the program that can calculate the layout of
objects on a diagram.

Transport Medium: UNIX Pipe

Protocol: Text files - ASCII.

Content: 1. The specification of the diagram in dot's
syntax. (I)

2. The layout of the diagram in dot's plain
output file format. (O)

53 VICI

Architecture Interfaces

 6.2.12 IF22 Vici-ed using Search

This is the interface the vici-ed uses to display the search component.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Sub-window in which the search component
operates. (I)

2. Selected command. (O)

 6.2.13 IF33 Search using libcfi

This is the interface that Search uses to read and save the tag database.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Create an XML document structure.
2. Add nodes to the document.
3. Add properties to nodes.
4. Save the document.
5. Read an XML file
6. Get nodes from the document
7. Remove nodes from the document.
8. Get properties from the document node.

 6.2.14 IF53 libcfi using libxml2

This is the interface between our wrapper and the third party XML library.

Transport Medium: Memory

Protocol: C function calls.

Content: 1. Create an XML document structure.
2. Add nodes to the document.
3. Add properties to nodes.
4. Save the document.
5. Read an XML file
6. Get nodes from the document
7. Remove nodes from the document.
8. Get properties from the document node.

54 VICI

Architecture Interfaces

 6.2.15 IF34 Search using libQtGui

This interface allows the search component to interact with the user.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Lists of commands and tags. (I)
2. User selections (O)

 6.2.16 IF23 libxml2 using the Tag Database

This is the interface that Search uses to read and save the tag database.

Transport Medium: File System

Protocol: XML File.

Content: 1. An XML file containing the tag database.
(I/O)

 6.2.17 IF24 Vici-ed using Command

This is the interface vici-ed uses to display the Command component that is
responsible for constructing the command and its options and parameters.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Sub-window (I)
2. The command (I)
3. The current symbol (I)
4. The parameters and options (O)

 6.2.18 IF25 Command using libsyntax

This interface allows the Command component to display the syntax diagram
for the current command.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. The EBNF specification for the command (I)
2. The sub-window to display the syntax chart

into. (I)

 6.2.19 IF26 Command using libcfi

This interface allows the Command component to read the database of

55 VICI

Architecture Interfaces

commands.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Create an XML document structure.
2. Add nodes to the document.
3. Add properties to nodes.
4. Save the document.
5. Read an XML file
6. Get nodes from the document
7. Remove nodes from the document.
8. Get properties from the document node.

 6.2.20 IF27 Command using libebnf

This interface allows the Command component to suggest valid alternatives
for parameters and options.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Request the parsing of an EBNF string
returning a pointer to a parse tree data
structure.

 6.2.21 IF37 Command using libQtGui

This interface allow the command component to provide the graphical
elements that allow user interaction.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Command lists.
2. Text display fields.
3. Option and parameter lists.
4. User selections
5. User text input.

 6.2.22 IF28 Syntax Library using libQtGui

This interface allows the syntax component to draw the syntax diagram, and
the user to interact with the diagram, such as scrolling and zooming.

Transport Medium: Memory

Protocol: C++ function calls.

56 VICI

Architecture Interfaces

Content: 1. Drawing operations on a QGraphicsScene
canvas.

 6.2.23 IF29 Symbol Library using libQtGui

This interface allows the symbol component to display the symbol and text
palettes.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Symbol palette
2. Text attributes

 6.2.24 IF30 Canvas Library using libQtGui

This interface allows the canvas to display the diagram and interact with the
user to edit it.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Drawing operations on a QGraphicsScene
canvas.

 6.2.25 IF31 Canvas Library using libcfi

This is the interface that the canvas component uses to load and save the
scripts.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Create an XML document structure.
2. Add nodes to the document.
3. Add properties to nodes.
4. Save the document.
5. Read an XML file
6. Get nodes from the document
7. Remove nodes from the document.
8. Get properties from the document node.

57 VICI

Architecture Interfaces

 6.2.26 IF32 libxml2 using the Script Database

This is the interface where the canvas uses the libxml2 library to load and save
the script files.

Transport Medium: File System

Protocol: XML File.

Content: 1. An XML file containing a script. (I/O)

 6.2.27 IF35 Vici-ed using libcron

This interface provides an environment in which libcron can interact with the
user.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Sub-window (I)
2. Menu actions (I)

 6.2.28 IF41 libcron using libQtGui

This interface allows the libcron component to create and use the graphical
components necessary to interact with its users.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Lists of scripts. (I)
2. Text entry fields for schedules. (I)
3. User selections (O)

 6.2.29 IF42 libcron using the Script Database

This interface allows the libcron to determine what scripts the user may wish
to set a schedule for.

Transport Medium: File System

Protocol: C Function Calls.

Content: 1. The list of scripts. (O)

58 VICI

Architecture Interfaces

 6.2.30 IF40 Vici-ed using Installer

This interface provides an environment in which the installer component can
interact with the user.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Sub-window (I)
2. Menu actions (I)

 6.2.31 IF43 Installer using libQtGui

This interface allows the installer component to create and use the graphical
components necessary to interact with its users.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Lists of scripts. (I)
2. Lists of menu categories (I)
3. User selections (O)

 6.2.32 IF44 Installer accessing the Script Database

This interface allows the installer component to determine the scripts available
to be installed.

Transport Medium: File System

Protocol: C function calls.

Content: 1. Lists of scripts. (O)

 6.2.33 IF38 Vici-ed using libsecure

This interface allows the vici-ed component to determine if its OK to open a
script and to sign a script when saving it.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Script file name (I)
2. Verification of signature. (O)
3. Signature for the file (O)

59 VICI

Architecture Interfaces

 6.2.34 IF36 Vici-ed using libQtGui

This is the interface between our vici-ed program and the third party library
responsible for the graphical interface.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Create and remove a main window.
2. Menu options.
3. Text entry and display widgets.
4. Sub-windows.

 6.2.35 IF39 Vici-ed using libvici

This is the interface that allows the editor user to test their scripts from the
editor interface.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Script to execute. (O)
2. Variables (I/O)
3. Files (I)
4. Thread details (I/O)

 6.2.36 IF45 libvici using libQtCore

The Qt library is used to provide a wrapper for system processes.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Command and options (I)
2. Pipes (I/O)
3. Signals (I)
4. Exit status (O)

 6.2.37 IF46 libvici using libcfi

This interface allows the libvici component to read the script file.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Read an XML file

60 VICI

Architecture Interfaces

2. Get nodes from the document
3. Get properties from the document node.

 6.2.38 IF47 libxml2 accessing Script Database

This is the interface where the vici interpreter reads the script files.

Transport Medium: File System

Protocol: XML File.

Content: 1. An XML file containing a script. (I)

 6.2.39 IF48 libvici using libsecure

This is the interface that allows the vici interpreter to determine if it should
open a script.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Script file name (I)
2. Verification of signature. (O)

 6.2.40 IF49 Vici program using libvici

This is the interface that allows the user to interact with their scripts.

Transport Medium: Memory

Protocol: C++ function calls.

Content: 1. Script to execute. (I)
2. Menu actions. (I)
3. Text input (I)
4. Text output (O)
5. Error messages (O)
6. Status information (I)

 6.2.41 IF50 Vici Program using libQtGui

This is the interface between our vici program and the third party library
responsible for the graphical interface.

Transport Medium: Memory

Protocol: C++ function calls.

61 VICI

Architecture Interfaces

Content: 1. Create and remove a main window.
2. Menu options.
3. Text entry and display widgets.

62 VICI

	1 Introduction
	1.1 Scope
	1.2 Overview
	1.3 Audience

	2 Tactics
	2.1 Functional Requirements
	2.2 Environmental Requirements
	2.3 Quality Requirements

	3 Responsibilities
	3.1 Functional Requirements
	3.2 Environmental Requirements
	3.3 Quality Requirements

	4 Conceptual Model
	4.1 Process Tasks
	4.1.1 Architecture
	4.1.2 Interface Stubs
	4.1.3 Component Exploration
	4.1.4 Test Planning
	4.1.5 Application Design
	4.1.6 User Interface Design
	4.1.7 Use Case Design
	4.1.8 Persistent Storage Design
	4.1.9 Test Case Design and Implementation
	4.1.10 Class Design
	4.1.11 Design Review
	4.1.12 Implementation
	4.1.13 Code Review
	4.1.14 Configuration Preparation
	4.1.15 Documentation
	4.1.16 Documentation Review
	4.1.17 Testing
	4.1.18 Packaging
	4.1.19 Integration Testing

	4.2 Components
	4.2.1 Administration GUI
	4.2.2 Graphical Script Editor
	4.2.3 Layout Program
	4.2.4 Desktop Installer
	4.2.5 Command Search Facility
	4.2.6 Script Interpreter
	4.2.7 Script Runtime
	4.2.8 Secure Signing Facility
	4.2.9 Graphical Crontab Editor

	5 Logical Model
	5.1 Implementation Modules
	5.1.1 The vici-adm Program
	5.1.2 The vici-cmd Database
	5.1.3 The libcfi Library
	5.1.4 The trc2dot Program
	5.1.5 The libxml2 Library
	5.1.6 The libebnf Library
	5.1.7 The libsyntax Library
	5.1.8 The libcc Library
	5.1.9 The libQtGui Library
	5.1.10 The libQtCore Library
	5.1.11 The symbol Library
	5.1.12 The canvas Library
	5.1.13 The GraphViz dot Program
	5.1.14 The command Library
	5.1.15 The vici-ed Program
	5.1.16 The installer Library
	5.1.17 The search Library
	5.1.18 The tag Database
	5.1.19 The libvici Library
	5.1.20 The vici Program
	5.1.21 The libsecure Library
	5.1.22 The libcron Library
	5.1.23 The libifstubs Library

	6 Interfaces
	6.1 External Interfaces
	6.1.1 IF01 Vici Admin UI
	6.1.2 IF02 Syntax Chart
	6.1.3 IF03 Symbol Palette
	6.1.4 IF04 Canvas UI
	6.1.5 IF05 Command UI
	6.1.6 IF06 Vici Editor UI
	6.1.7 IF07 Installer UI
	6.1.8 IF51 Installing Scripts onto Desktop
	6.1.9 IF08 Search UI
	6.1.10 IF09 Command Execution
	6.1.11 IF10 Vici Runtime
	6.1.12 IF11 Cron Interface

	6.2 Internal Interfaces
	6.2.1 IF12 Vici-adm to libebnf
	6.2.2 IF13 Vici-adm to libsyntax
	6.2.3 IF14 libsyntax to libebnf
	6.2.4 IF15 libxml2 to Command Database
	6.2.5 IF16 Vici-adm using libcfi
	6.2.6 IF52 libcfi using libxml2
	6.2.7 IF17 Vici-adm using libQtGui
	6.2.8 IF18 Vici-ed using Symbol
	6.2.9 IF19 Canvas using Symbol
	6.2.10 IF20 Vici-ed using Canvas
	6.2.11 IF21 Canvas using GraphViz dot
	6.2.12 IF22 Vici-ed using Search
	6.2.13 IF33 Search using libcfi
	6.2.14 IF53 libcfi using libxml2
	6.2.15 IF34 Search using libQtGui
	6.2.16 IF23 libxml2 using the Tag Database
	6.2.17 IF24 Vici-ed using Command
	6.2.18 IF25 Command using libsyntax
	6.2.19 IF26 Command using libcfi
	6.2.20 IF27 Command using libebnf
	6.2.21 IF37 Command using libQtGui
	6.2.22 IF28 Syntax Library using libQtGui
	6.2.23 IF29 Symbol Library using libQtGui
	6.2.24 IF30 Canvas Library using libQtGui
	6.2.25 IF31 Canvas Library using libcfi
	6.2.26 IF32 libxml2 using the Script Database
	6.2.27 IF35 Vici-ed using libcron
	6.2.28 IF41 libcron using libQtGui
	6.2.29 IF42 libcron using the Script Database
	6.2.30 IF40 Vici-ed using Installer
	6.2.31 IF43 Installer using libQtGui
	6.2.32 IF44 Installer accessing the Script Database
	6.2.33 IF38 Vici-ed using libsecure
	6.2.34 IF36 Vici-ed using libQtGui
	6.2.35 IF39 Vici-ed using libvici
	6.2.36 IF45 libvici using libQtCore
	6.2.37 IF46 libvici using libcfi
	6.2.38 IF47 libxml2 accessing Script Database
	6.2.39 IF48 libvici using libsecure
	6.2.40 IF49 Vici program using libvici
	6.2.41 IF50 Vici Program using libQtGui

