
VICI

VISUAL CHART INTERPRETER

Preliminary Analysis

Publication History

Date Who What Changes

6 April 2014 Brenton Ross Initial version.

Copyright © 2009 - 2014 Brenton Ross
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
The software is released under the terms of the GNU General Public License version 3.

ii

Preliminary Analysis

Table of Contents
 1 Introduction..5

 1.1 Scope..5
 1.2 Overview...5
 1.3 Audience...5
 1.4 Project Name..6

 2 Survey Of Other Visual Shells...7
 2.1 Visual Programming Languages...7

 2.1.1 AgentSheets...7
 2.1.2 Alice..7
 2.1.3 Analytica...7
 2.1.4 AppWare..8
 2.1.5 AudioMulch..8
 2.1.6 Authorware..8
 2.1.7 Automator...8
 2.1.8 Befunge...9
 2.1.9 Blockly..9
 2.1.10 CODE..9
 2.1.11 CiMPLE..9
 2.1.12 DRAKON...10
 2.1.13 Flow-Based Programming..10
 2.1.14 Game Maker..10
 2.1.15 Google App Inventor...10
 2.1.16 Helix..11
 2.1.17 Illumination Software Creator..11
 2.1.18 LabVIEW..11
 2.1.19 Limnor...12
 2.1.20 Microsoft Visual Programming Language..................................12
 2.1.21 OpenWire..12
 2.1.22 Piet..12
 2.1.23 Prograph..12
 2.1.24 Simulink..13

 2.2 Summary...13
 3 UNIX Commands...14

 3.1 Useful Commands..14
 3.1.1 Linux In a Nutshell...14
 3.1.2 UNIX Tutorial...15
 3.1.3 Linux Commands, a Practical Reference......................................15
 3.1.4 Linux in a Nutshell..15
 3.1.5 Summary...15

 3.2 Parameters and Options...16
 3.2.1 Parameter List Styles..16
 3.2.2 Example EBNF...17
 3.2.3 Example Syntax Chart..18

iii

Preliminary Analysis

 4 Visual Scripting Language...19
 4.1 Commands..19
 4.2 Control Structures...20
 4.3 Functions..21
 4.4 Data Objects..22
 4.5 Calculations ...22
 4.6 Files..22
 4.7 User Interfaces..23
 4.8 Process Synchronisation...23
 4.9 User Configuration...24
 4.10 Feasibility Study...24

 5 Testing and Debugging...25
 5.1 Observation...25
 5.2 Testing...25

 6 Desktop Integration..26
 7 Command Search Capability..27

 7.1 Finding Commands...27
 7.2 Help on Commands..27

 8 Interpreter...28
 8.1 Structure..28
 8.2 Security...28

 9 Conclusion..29
 9.1 Development Model...29

Appendix A - Glossary...30

4 VICI

Preliminary Analysis Introduction

 1 Introduction

 1.1 Scope

The preliminary analysis task is to investigate the implications and
consequences of the Vision Statement. It has the task of setting the boundaries
for the project and for documenting the external interfaces to the systems that
the project will connect with.

Understanding the scope of the problem is the first step on the path to true
panic.

 1.2 Overview

The UNIX desktop environments, from CDE on, have focussed on running
GUI programs. The result is that the amazingly rich set of command line
UNIX/Linux programs is now almost invisible from the desktop.

It is difficult for desktop users to use and combine these programs to automate
their work. Many of us have seen office workers manually using a computer to
perform the same tasks every day. It is often the case that these tasks can be
automated with some simple shell scripting, but there is rarely the opportunity
for experienced programmers to assist with this sort of work. The users have
the motivation and probably the opportunity, but are often unaware that
scripting is even a possibility.

The aim of this project is provide a set of tools that will give a novice user the
ability to build and run scripts that can be used to automate some of their
routine tasks.

In addition to actually constructing a script there are some other problems that
must be overcome:

• There are literally thousands of programs available on a typical Linux
computer. There must be some way for the novice user to select the
programs required for their problem.

• Each program has its own set of parameters, and there is often very
little that is common or standard in the selection of the identifiers for
these parameters. Help in setting these parameters must be part of the
solution.

• It must be possible to install the scripts into the desktop environment
so that they can be used like any other program.

 1.3 Audience

This document is intended for anyone with an interest in the VICI project.

It will be used by the developers to record the reasoning behind some of the
decisions made during development.

5 VICI

Preliminary Analysis Introduction

It can be used by those wishing to determine if the software created by this
project would be useful.

 1.4 Project Name

The name chosen for this project is “VICI” for VIsual Chart Interpreter. For a
while the name was to be GUISH but on reflection the operation is not like
that of a shell interpreter, so the project has been re-established as VICI.

 Interestingly for such a common sounding name there are no existing projects
on Source Forge or Savannah. There are quite a few projects on GitHub with
the VICI name but it appears that would not be an issue if we decide to use
GitHub as our repository

6 VICI

Preliminary Analysis Survey Of Other Visual Shells

 2 Survey Of Other Visual Shells
This section will summarize the attempts made by others to create similar
programs to what is proposed for this project. This might take a while since
Wikipedia lists 86 entries under Visual Programming Languages.

 2.1 Visual Programming Languages

The following descriptions were drawn from Wikipedia pages, and sometimes
the linked web sites of the actual products.

 2.1.1 AgentSheets

An object oriented visual language in which active agents are placed onto a
spreadsheet like grid where they can communicate with each other.

The programming seems to be limited to what the original designers envisaged
and the entire thing runs in Java so it is not what this project is intending.

The original ideas were first developed in 1991 and it was still an active
product in 2010 so it appears that the concept is robust.

 2.1.2 Alice

Alice uses a drag and drop environment to create computer animations using
3D models. Users can place objects from Alice's gallery into the virtual world
that they have imagined, and then they can program by dragging and dropping
tiles that represent logical structures.

While the execution is visible (using Java), it appears that the scripting is done
with a conventional text approach.

The aim of the environment is to better allow students to visualise what is
happening while their program is running and are thus better able to correct
problems. It appears to be quite popular as a student's introductory language.

We will need to include some way for our users to test their scripts.

 2.1.3 Analytica

A visual software package for creating, analysing and communicating
quantitative decision models. Analytica includes hierarchical influence
diagrams for visual creation and view of models, intelligent arrays for working
with multidimensional data, and Monte Carlo simulation for analysing risk and
uncertainty. The design of Analytica, especially its influence diagrams and
treatment of uncertainty, is based on ideas from the field of decision analysis.
Analytica includes a computer language, which is notable in being declarative
(non-procedural) for referential transparency, supporting array abstraction, and
providing automatic dependency maintenance for efficient sequencing of
computation.

7 VICI

Preliminary Analysis Survey Of Other Visual Shells

It appears to be quite popular in the finance and risk management industries.

Our analysis will need to weigh a declarative approach against the procedural
approach to defining our programs.

 2.1.4 AppWare

This was a graphical language that allowed its user to route events between
display and function objects using a graphical editor. The product underwent
several changes of name and ownership and eventually died, which seems
unfortunate since it appears to be a solid idea that would allow a market for the
objects and would make it easy for end users to construct simple programs.

If we view the UNIX system commands as functions and the files and variables
as objects (and zenity commands for other GUI objects) then this project might
almost be considered a revival of AppWare, but done in an easily extensible
manner.

 2.1.5 AudioMulch

This uses a graphical editor to connect together modules which perform
various sound processing tasks.

Not immediately applicable to vici but it does demonstrate the utility of
graphical languages for the non-programmer.

 2.1.6 Authorware

Authorware used a visual interface with icons, representing essential
components of the interactive learning experience. "Authors" placed icons
along a “flow-line” to create a sequence of events. Icons represented such
components as Display—put something on the screen, Question—ask the
learner for a response, Calc—perform a calculation, read data, and/or store
data, and Animate—move something around on the screen. By simply placing
the icons in sequence and adjusting their properties, authors could instantly see
the structure of program they were creating and, most importantly, run it to see
what learners would see. On-screen changes were easy to make, even while the
program was running.

The software was discontinued, apparently replaced within Adobe Systems by
Flash.

This product is more evidence that a flowchart based visual programming
language will be a solid foundation.

 2.1.7 Automator

An application developed by Apple for OS X that implements point-and-click
(or drag-and-drop) creation of work-flows for automating repetitive tasks into
batches for quicker alteration, thus saving time and effort over human
intervention to manually change each file separately. Automator enables the

8 VICI

Preliminary Analysis Survey Of Other Visual Shells

repetition of tasks across a wide variety of programs, including the Finder, the
Safari web browser, iCal, Address Book and others.

This program is almost exactly what is envisaged for vici, but with bindings
into the main Apple programs. The interface, however, does not do a very good
job of showing the structure of the script.

 2.1.8 Befunge

An experimental language in which the commands are laid out in a grid
(possibly of more than two dimensions) and the next command to be executed
depends not only on the current command, but also on the previous direction
that the command was arrived at from. Multiple threads of control can
navigate in arbitrary directions over the set of commands. (The language also
includes the ability to rewrite its commands.)

A bit too complex for our purposes, but there is nothing stopping the flow of
control being in arbitrary directions if we are going to follow a flowchart
model.

 2.1.9 Blockly

A web based graphical language where blocks containing commands and
control structures are assembled by drag and drop.

Quite a nice implementation of what we are proposing, but the web based
nature makes it unusable for our purposes.

 2.1.10 CODE

This uses a graphical environment to define the data flow between components
of programs. The system is designed to allow the creation of parallel execution
models from conventional programs.

The parallel processing part is not applicable to our proposal and their
approach that reaches into the component programs to access their internal
subroutines is more than we need or want. However, the use of a flowchart to
describe the flow is encouraging.

 2.1.11 CiMPLE

A graphical programming language for students designing control programs
for robots.

The range of commands is limited to those necessary for the robot domain, but
the control structures are a good illustration of what we are proposing for vici.

9 VICI

Preliminary Analysis Survey Of Other Visual Shells

 2.1.12 DRAKON

A graphical programming language developed for the Russian space projects.
It is used a graphical editor that can produce code in various languages for
normal compilation.

An excellent example of flowchart based programming but not directly
applicable to our purpose. It may be useful as a guide for flowchart creation.

 2.1.13 Flow-Based Programming

A programming paradigm that defines applications as networks of "black box"
processes, which exchange data across predefined connections by message
passing, where the connections are specified externally to the processes. These
black box processes can be reconnected endlessly to form different
applications without having to be changed internally. FBP is thus naturally
component-oriented.

This constitutes a subset of what we are proposing. The vici system will
include port communications between processes, as in stdin and stdout, but we
will also have control over what processes are executed and the ability to
buffer results into files.

 2.1.14 Game Maker

GameMaker's primary development interface uses a drag-and-drop system,
allowing users unfamiliar with traditional programming to intuitively create
games by visually organizing icons on the screen. These icons represent
actions that would occur in a game, such as movement, basic drawing, and
simple control structures.

It would seem that the graphical aspect allows the construction at an object
level, with some functions (actions), but that the details are done with a
conventional scripting language.

 2.1.15 Google App Inventor

It allows anyone, (including people unfamiliar with computer programming),
to create software applications for the Android operating system (OS). It uses a
graphical interface that allows users to drag-and-drop visual objects to create
an application that can run on the Android system, which runs on many mobile
devices.

Similar to Blockly. We may need to decide between a tile like mechanism, used
by these programs, or a flowchart mechanism.

Perhaps the Nassi–Shneiderman diagram might be able to be adapted to a tile
like system.

10 VICI

Preliminary Analysis Survey Of Other Visual Shells

 2.1.16 Helix

Helix is a pioneering database management system for the Apple Macintosh
platform, created in 1983. Helix uses a graphical "programming language" to
add logic to its applications, allowing non-programmers to construct
sophisticated applications.

While Helix's visual programming is possibly easier for novices to learn
(because it uses a flowcharting paradigm that is intuitively understood by non-
technical individuals), it becomes tedious when the amount of code to be
written becomes significant, especially for an individual who can write code
much more easily and conveniently than if forced to drag icons from a palette.
Helix has consequently suffered from the lack of developer support and third-
party applications.

This is something that we need to keep in mind. The vici system is intended for
simple tasks, not major programming projects. It might be advisable to provide
a means of exporting vici script to bash script so that projects can start small
and grow.

 2.1.17 Illumination Software Creator

A graphical IDE that allows you to drag code blocks and connect them in order
to create an application program. To create a program, you simply drag code
blocks onto the canvas and configure the block. Then, you connect outputs to
inputs. The code blocks are categorized to make them easy to find. Clicking on
a code block allows you to set various parameters for the given block.
Variables, which appear in the lower-left panel, come in three types: text,
number and text file.

This product is quite close to what we are proposing, and some system
administrators are using it to add a GUI interface to their shell scripts. It is a
proprietary program but it does illustrate that what we are proposing might be
useful.

 2.1.18 LabVIEW

The programming language used in LabVIEW, also referred to as G, is a data
flow programming language. Execution is determined by the structure of a
graphical block diagram (the LV-source code) on which the programmer
connects different function-nodes by drawing wires. These wires propagate
variables and any node can execute as soon as all its input data become
available. Since this might be the case for multiple nodes simultaneously, G is
inherently capable of parallel execution. Multi-processing and multi-threading
hardware is automatically exploited by the built-in scheduler, which
multiplexes multiple OS threads over the nodes ready for execution.

11 VICI

Preliminary Analysis Survey Of Other Visual Shells

 2.1.19 Limnor

A generic-purpose code-less and visual programming system. The aim is to
enable users to create computer software without directly coding in a texture
programming language. It can be extended by software developers.

Yet another attempt to create a visual programming environment for complete
GUI applications. It has one of the most terrifyingly cluttered user interfaces I
have ever seen.

 2.1.20 Microsoft Visual Programming Language

This is a message passing system between active objects. A visual editor is
used to connect the objects, and thus define the message paths.

Not particularly applicable to our purpose.

 2.1.21 OpenWire

A visual programming environment built on Delphi in which pins on
components are connected by wires to relay messages with the data types
taken into account. It appears to be an attempt to produce an open source
version of LabVIEW (which make the choice of Delphi a bit odd).

Limited to Delphi (and hence not available for Linux) and uses coded
components within a program, rather than acting as a shell.

 2.1.22 Piet

Like Befunge but with coloured coded areas representing the commands. Quite
pretty to look at, but not easy to read for humans.

 2.1.23 Prograph

A visual, object-oriented, data-flow, multi-paradigm programming language
that uses iconic symbols to represent actions to be taken on data.

Prograph introduced a combination of object-oriented methodologies and a
completely visual environment for programming. Objects are represented by
hexagons with two sides, one containing the data fields, the other the methods
that operate on them. Double-clicking on either side would open a window
showing the details for that object; for instance, opening the variables side
would show class variables at the top and instance variables below. Double-
clicking the method side shows the methods implemented in this class, as well
as those inherited from the superclass. When a method itself is double-clicked,
it opens into another window displaying the logic.

Developers had to pay attention to routing of wiring, and to commenting
inputs and outputs, to keep their diagrammatic code clean, but in general terms
there was no way to avoid this sort of literal spaghetti code.

Another problem was a profusion of windows. When moving around the

12 VICI

Preliminary Analysis Survey Of Other Visual Shells

Prograph workspace, the IDE generally required a new window to be opened
to see the contents of methods.

Our solution should pay attention to the problems with this language. Lots of
small windows can be very tedious to use, and some means of automating the
layout process might be an advantage.

 2.1.24 Simulink

Simulink, developed by MathWorks, is a commercial tool for modelling,
simulating and analysing multi-domain dynamic systems. Its primary interface
is a graphical block diagramming tool and a customizable set of block
libraries. It offers tight integration with the rest of the MATLAB environment
and can either drive MATLAB or be scripted from it.

 2.2 Summary

There is a very wide range of visual programming languages that have been
developed over the years.

One of the main issues is that they are seen as being too basic for professional
programmers to use, and hence they tend to not get much attention unless there
is a strong commercial incentive, such as the LabVIEW product.

Most of the examples were either for creating 3D worlds for games or for
creating simple business applications by extending the usual drag-n-drop GUI
construction process into the underlying actions.

The Apple Automator program comes very close to what we are proposing,
perhaps too close.

Two basic styles of graphical editing seem to be applicable for our purpose.
We can either create a flowchart diagram or use some sort of blocks or tiles
that “clip” together. If we use the tile approach then a Nassi-Shneiderman
technique might be applicable. However, the flowchart is the more commonly
used technique and is, perhaps, less likely to intimidate the novice user.

The use of the dot program (or similar) to automate the layout of a flowchart
might be a useful option.

Rather than pop-up dialog boxes for setting command parameters it might be
better to have a semi-fixed window pane that shows the details of which ever
command is selected. Alternatively, allow it to be floating or pinned according
to the user's desires.

A common theme among many of the examples is the ability of the user to
visualise the execution of their program – to be able to watch what is
happening step by step. Our solution should include a debug mode as part of
the editor that will allow this sort of visual testing.

13 VICI

Preliminary Analysis UNIX Commands

 3 UNIX Commands
This section examines the commands that are likely to be used in a scripting
system. In particular we look at the styles of parameters that are passed to
these commands so that our interface will be able to cope with as many
different styles as possible.

My system has 3816 executable programs installed on the defined paths. It is
too big a task to examine each and every one. Our goal is to select a useful
subset of commands that a novice user might want in their scripts. However,
we also need to look at all the different styles used for the program parameters
so that other commands can be added as necessary without having to rewrite or
extend the edit program.

 3.1 Useful Commands

The approach to determining which are the most useful commands is to refer
to books like “Linux in a Nutshell” and consider the ones that they think are
worth knowing about. I will leave out commands which can better be handled
by other GUI programs (such as vi) and programs that are more suited for
system administration which probably should not be available for the novice
user. Also I have left out networking programs, like telnet and ftp, for similar
reasons.

 3.1.1 Linux In a Nutshell

This first edition book is a bit dated now, and some of the commands
referenced are probably not suitable for or scripting.

The useful commands include:
apropos, at, atq, atrm, bc, cal, cat, chgrp, chmod, chown, cksum, cmp,
colrm, column, comm, cp, cpio, cut, date, df, diff, diff3, echo, env,
ex, expand, expr, false, file, find, fmt, fold, free, grep, gzip,
gunzip, head, hostname, id, info, ispell, kill, killall, less, ln,
locate, logname, lpq, lpr, lprm, ls, man, mkdir, more, mv, nice,
paste, pidof, pr, ps, pwd, rm, rmdir, sed, sleep, sort, split, tac,
tail, tee, test, top, tr, true, unexpand, uniq, uptime, users, w, wc,
whatis, who, whoami, xargs.

The bash internal commands include:
alias, break, case, cd, continue, echo, eval, exec, exit, export, fc,
for, function, history, if, jobs, kill, let, pwd, read, return,
select, set, shift, source, test, times, trap, typeset, ulimit, umask,
unalias, unset, until, wait, while.

Some system administration commands that might be useful:
cpio, crontab, ifconfig, netstat, ping, tar, traceroute.

14 VICI

Preliminary Analysis UNIX Commands

 3.1.2 UNIX Tutorial

The following commands are discussed in an on-line web tutorial on UNIX:
ls, mkdir, cd, pwd, cp, rm, rmdir, cat, less, head, tail, grep, wc,
sort, who, man, whatis, apropos, chmod, jobs, kill, ps, df, du, gzip,
zcat, file, diff, find, history, info, echo, printenv, set, source.

 3.1.3 Linux Commands, a Practical Reference

The following commands are briefly described:
apropos, man, which, time, cd, pushd, popd, alias, ls, find, locate,
grep, tar, bzip2, wget, echo, hostname, whois, netstat, sed, sort, tr,
join, paste, units, seq, cal, date, du, df, rpm, tail, lsof, ps, last,
uname, head, cat, lsusb.

 3.1.4 Linux in a Nutshell

This list was drawn from the fifth edition of this book. I have selected those
that would be useful for a novice user:
apropos, at, atq, atrm, basename, bc, cat, cat, chmod, chown, cksum,
cmp, column, comm, cp, cpio, crontab, cut, date, df, diff, diff3,
dirname, du, echo, env, ex, expr, false, file, find, fold, free, grep,
gzip, gunzip, head, hostname, id, ifconfig, join, kill, killall, last,
less, ln, locate, logname, lpr, lpq, lprm, lpstat, ls, lsusb, man,
mkdir, mkfifo, more, mv, netstat, nice, paste, ping, pr, ps, printenv,
pwd, rm, rpm, sed, seq, sleep, sort, split, strings, tac, tail, tar,
tee, test, time, top, touch, tr, true, uname, uniq, uptime, usleep,
vmstat, w, wall, wc, wget, whatis, which, whoami, xargs, yes.

 3.1.5 Summary

This is a consolidation of the above lists, containing 150 commands. They may
not all make it into the final list, and some will be implemented as built ins for
our interpreter, but they should provide a good cross section for our analysis.
alias, apropos, at, atq, atrm, basename, bc, break, bzip2, cal, case,
cat, cd, chgrp, chmod, chown, cksum, cmp, colrm, column, comm,
continue, cp, cpio, crontab, cut, date, df, diff, diff3, dirname, du,
echo, env, eval, ex, exec, exit, expand, export, expr, false, fc,
file, find, fmt, fold, for, free, function, grep, gunzip, gzip, head,
history, hostname, id, if, ifconfig, info, ispell, jobs, join, kill,
killall, last, less, let, ln, locate, logname, lpq, lpr, lprm, lpstat,
ls, lsof, lsusb, man, mkdir, mkfifo, more, mv, netstat, nice, paste,
pidof, ping, popd, pr, printenv, ps, pushd, pwd, read, return, rm,
rmdir, rpm, sed, select, seq, set, shift, sleep, sort, source, split,
strings, tac, tail, tar, tee, test, time, times, top, touch, tr,
traceroute, trap, true, typeset, ulimit, umask, unalias, uname,
unexpand, uniq, units, unset, until, uptime, users, usleep, vmstat, w,
wait, wall, wc, wget, whatis, which, while, who, whoami, whois, xargs,
yes, zcat.

These can be classified as relating to the control of scripts, relating to the state
of the computer, or relating to processing text files.

15 VICI

Preliminary Analysis UNIX Commands

 3.2 Parameters and Options

The options and parameters of a command are effectively the symbols of a
command specific language. If we use language definition techniques, such as
EBNF or Syntax Charts then we should be able to describe the options for any
command, and also provide the user with some guidance on the correct order
of the parameters and options.

Alternatives thus include:

1. A simple text entry dialog where the user types in the options and
parameters. We can display the man page while they do this.

2. A palette of options specific to the command that the user selects from
to build up the full set of options. Again the man page would be
displayed.

3. A palette of options, with the inapplicable ones disabled, that the user
selects from to build up the full set of options. The man page and a
syntax diagram for the command would be displayed.

Since there are several instances of programs that generate syntax diagrams
from EBNF, it seems that a possible option is to store the EBNF, perhaps
within an XML file, and create the diagram on demand.

We can also use these options as an opportunity to deliver a simple version
first, and then extend to the palette and EBNF in later versions. In any case, it
would seem prudent to offer the simple text entry mode for all versions as it
would allow a user to place any command and options that they wanted in the
script without having to have a new command added to the collection first.

 3.2.1 Parameter List Styles

The options and parameters for commands come in several different styles.
These usually serve as either boolean flags to control the program, or as string
parameters.

• Short Options. These are options or switches that are generally
represented within the program as a boolean value. On the command
line they are represented as a single character, possibly with a leading
hyphen, or occasionally a plus sign. They may also, in some programs,
be grouped together, e.g. -tz rather than -t -z.

• Long Options. These are again options or switches that are normally
represented by boolean values within the program, but on the command
line a more meaningful word is used. These are normally preceded by
two hyphens.

• Parameter. These are string values that are passed to the program where
they may be reinterpreted as numbers, or file names etc. Parameters
may be prefixed by an option that indicates to the program what the
parameter is to be used for.

• Name and Value. These are option and parameter pairs, usually

16 VICI

Preliminary Analysis UNIX Commands

separated by an equals sign (=).

 3.2.2 Example EBNF

The following is an example that demonstrates how EBNF can be used to
describe the options and parameter for a command.

There are several alternative EBNF syntaxes so to avoid confusion we will
document our particular dialect here:

Grammar ::= { Production } ;

Production ::= Name “::=” Symbol { Symbol } “;” ;

Symbol ::= Terminal-Symbol | Nonterminal-Symbol ;

Terminal-Symbol ::= Quotation [“...” Quotation] ;

Quotation :: Quote Characters Quote ;

Quote ::= '”'| “'” ;

Nonterminal-Symbol ::= Name | Choice | Option | Repetition ;

Choice ::= Symbol “|” Symbol ;

Option ::= “[“ Symbol “]” ;

Repetition ::= “{“ Symbol “}” ;

Using this EBNF we can define the syntax for the cal command as follows:

Options ::= [Period] [DayOption] [Julian] [Date] ;

Date ::= [[[Day] Month] Year] ;

Period ::= Single | Triple | Annual ;

Single ::= “-1” | “--one” ;

Triple ::= “-3” | “--three” ;

Annual ::= “-y” | “--year” ;

DayOption ::= Sunday | Monday ;

Sunday ::= “-s” | “--sunday” ;

Monday ::= “-m” | “--monday” ;

Julian ::= “-j” | “--julian” ;

Day ::= “1” ... “31” ;

Month ::= “1” ... “12” ;

Year ::= “1” ... “9999” ;

17 VICI

Preliminary Analysis UNIX Commands

 3.2.3 Example Syntax Chart

The following syntax diagram corresponds to the previous EBNF example.

18 VICI

Figure 1: cal options

Figure 2: Date

Figure 3: FullDate

Figure 4: MonthDate

Figure 7: Single Figure 5: Triple

Figure 8: Annual

Figure 11: Sunday Figure 9: Monday
Figure 12: Julian

Figure 14: Day

Figure 13: Month

Figure 10: DayOption

Figure 6: Period

Figure 15: Year

Preliminary Analysis Visual Scripting Language

 4 Visual Scripting Language
This section looks at some of the options and issues involved in the design of a
visual scripting language.

 4.1 Commands

A command has several properties that we need to address. There is the flow of
control within the script, the flow data between the commands via stdin,
stdout, and stderr, and the exit status of the commands. Additionally it would
be nice to have commands run as background processes, and hence access to
the process id might be useful.

Simple flow of control is represented by a black arrow line. It states that when
Command 1 completes the Command 2 should be run.

We can represent conditional execution using red (for fail) and green (for
success) arrow lines. The above example executes Command 1 and if its exit
status is 0 then Command 2 is executed, otherwise Command 3 is executed.

In the above diagram we show a pipeline from stdout of Command 1
connected to stdin of Command 2. Command 2 is started when data becomes
available and terminates when the data reaches and end-of-file state.

The grey arrow pipeline from Command 2 is the union of stdout and stderr for
Command 2. A red arrow pipeline would represent stderr.

19 VICI

Command 1 Command 2

Command 1 Command 2

Command 3

Command 1 Command 2

Preliminary Analysis Visual Scripting Language

In this example Command 1 is started as a background process, indicated by
the blue colour, and control is then passed to Command 2 and then to the kill
command. The blue arrow line indicates the kill signal passed back to
Command 1. Other signals can be specified as parameters to the kill command.

 4.2 Control Structures

The commands already have an exit status and stderr vs stdout that can be used
to create conditional control structures. A simple test command can be used as
shown in this example where Command 1 is executed if a = b and Command 2
otherwise:

A simple loop can also be easily constructed from these components
Command 1 is executed while a = b:

20 VICI

Command 2 kill

test a = b

Command 1 Command 2

Command 3

test a = b

Command 1

Command 1

Preliminary Analysis Visual Scripting Language

Two additional looping constructs need to be provided as built in commands.
These are the “for each” and “for each line” commands that pass control to
other commands before they complete themselves.

The “for each line” command would be used like this where Command 2
(probably the “read” command – see below) is executed once for each line of
output produced by Command 1:

The “for each” command is similar, but executes its commands for each
symbol (separated by white space):

 4.3 Functions

We need to group commands together so that they can be triggered from the
menu or the drop action. It would also be useful to be able to reuse some
groups of commands. We will therefore provide a function construct:

We can then refer to the function from within another function using the
function symbol:

A function can also be run as a background task, which would be indicated by
a blue colour (similar to background commands). Functions can flagged for
entry into the runtime menu, as indicated by the “Start” function in the above
example.

21 VICI

For each lineCommand 1

Command 2

For each xCommand 1

Command 2 $x

Func Command 1 Command 2

Start Func Command 1

Preliminary Analysis Visual Scripting Language

 4.4 Data Objects

Any useful language needs to store and retrieve data. The following symbols
will represent data objects:

For data values as constants or variables we will use the “internal storage”
symbols with a yellow colour to indicate a constant. The symbol looks a bit
like a fragment of a spreadsheet to reinforce the concept. The above diagram
shows the constant being “echoed” into the variable.

Variable can be referenced in the parameter list of commands by preceding
their names with a $ symbol.

Multiple assignments are possible, as shown above. This is equivalent of the
bash command “read”.

It might be useful to insist that variables have exactly one pipeline connection.

Variables will be global within a script. The user can devise a naming
convention to localise their variables if required. It will probably be
implemented as an associative array with all values stored as strings.

Functions will imply parameters for the functions, and thus we will need a
stack, in fact a stack for each thread within the script. The usual numeric
positional notation will be used for parameters, $1, $2, etc.

 4.5 Calculations

For scripting we usually only need a few simple calculations, such as counting.
Hence we will include a built in command similar to the bash “let” command.
It will do assignments and simple single operator calculations.

 4.6 Files

A script will normally need to access a user's files. It will also often need
temporary files and in-line files.

The above example shows Command 1 being used to process a user's file and
having the results stored in another of her files.

22 VICI

“constant value” variable

Command 1 A B C

File_1 File_2Command 1

Preliminary Analysis Visual Scripting Language

Here, File_1 is an in-line file and File_2 is temporary. Temporary files will be
deleted on exit. The editor will display a text dialog so that the contents of
File_1 can be set. The in-line file may contain references to variables that will
be expanded when the file is used.

 4.7 User Interfaces

The zenity command can be used to create user interface components. A
couple of pre-packaged zenity commands might be useful for getting and
displaying text vie pipelines.

A special variable might be needed to handle the names of files that are
dropped onto the interpreter GUI.

 4.8 Process Synchronisation

A script will be able to run commands and functions as background tasks. The
runtime will also have a menu system that will allow the user to initiate
multiple functions, which may end up running simultaneously. Hence we need
some means of synchronising actions so that the user can control what
happens.

A lock symbol can be used to indicate that a variable is a mutex. A mutex
must be granted before the process can continue, and can only be held by one
thread at a time.

A flag symbol can be used to indicate that a variable is a semaphore. A
semaphore is automatically decreased by one unless its value would be less
than zero in which case processing is paused until a signal increases its value.

23 VICI

File_1 File_2Command 1

var_1 var_1

var_1

signal

Command 1

Preliminary Analysis Visual Scripting Language

 4.9 User Configuration

The colours shown in the preceding examples are an indication of the intent of
the design. Since there are some users that may have more or less severe
colour blindness we need to provide a means of allowing the users to set their
preferred colour scheme, or to use patterns instead of colours.

Since this is a graphical application there will not be a requirement to support
multiple languages in the diagrams. However, the help text will need to fully
support internationalisation.

The user interface should be easily configurable to accommodate different
screen sizes and aspects. For example, a user may want to display two
flowcharts side by side if there are synchronisation flows between them.

 4.10 Feasibility Study

An example program has been slightly adapted to demonstrate the viability of
creating a graphical editing program.

24 VICI

Preliminary Analysis Testing and Debugging

 5 Testing and Debugging

 5.1 Observation

The user needs to be able to run subsections of the script, i.e. to define start
and stop points. To support this it might also be useful to be able to save and
restore the variables, and perhaps also the files that are in use.

Stepping through the script, one command at a time, is also a time honoured
method of debugging programs. We might also consider a “slow motion”
option where a small sleep step would be introduced between each command
execution.

A stop point can be indicated by changing a flow symbol into one that includes
some sort of “break” indication. The user interface can then be used to single
step execution, or resume (either at full speed or slowly). A small icon can be
used to represent the current execution position, and this can be dragged to
other points on the diagram to restart and retry execution.

An ability to observe the variables, and file contents, as the program is
executed would seem to be a requirement. While the value of a variable can be
easily displayed, files might be a larger challenge. We might, for example,
show the file size, or the last few lines if it is a text file, as the processing is
performed.

The currently executing command, or the flow line pointing to the next to
execute command, should be highlighted. This may be several objects if there
are simultaneous threads running. Variables that are being referenced, or are
about to be referenced, can also be highlighted.

The global variables can be displayed as a table. The stacks can be shown as a
table showing the top few elements. Where there are multiple threads we can
switch between stacks according to which thread is being viewed.

 5.2 Testing

To perform tests the user may want to be able to change the values in variables
before running a fragment of the script. Hence we should allow the displayed
variables to be modified by the user.

Files can best be handled by taking snapshots and reverting to these backups
when the fragment is restarted. The user can always use an editor to modify the
files, or swap in alternative saved ones if they want.

25 VICI

Preliminary Analysis Desktop Integration

 6 Desktop Integration
This section documents the way that graphical programs are installed into a
modern Linux desktop.

The specifications for the desktop are provided (for our purposes) by three
documents from freedesktop.org.

• desktop-entry-spec-1.0.html which documents the contents of desktop
files which are used to define an entry.

• menu-spec-1.0.html which documents the way that the menu structure
is defined.

• basedir-spec-0.6.html which defines where files should be placed and
how they should be located.

The editor will be responsible for creating suitable desktop files and menu
entries and placing the files appropriately.

The editor should also allow the user to remove scripts that they no longer
need. In doing so it should remove all associated desktop files and menu
entries.

26 VICI

http://www.freedesktop.org/wiki/Specifications

Preliminary Analysis Command Search Capability

 7 Command Search Capability
This section investigates the options and alternatives for enabling the user to
easily find suitable commands.

 7.1 Finding Commands

The simplest approach is to provide access to the “apropos” command,
displaying the results into a text dialog.

We will be providing a set of prepared commands that should be available
from a selection list. It should be possible to search for strings that occur in the
short descriptions for these commands.

We can add tags (and allow the user to add their own tags) to the prepared
commands and allow the user to select from the list of tags to find suitable
commands. Allowing a user to select either the intersection or the union of sets
of tags would allow the search to be refined. A hierarchical structure for the
tags might be useful.

 7.2 Help on Commands

The editor should allow the user to pop up a text dialog showing either the
man page or the info page for the selected command.

These help pages are not the most friendly things for the novice script writer,
but re-writing them seems like too much work, and it might be best if they
eventually learnt to use these resources.

27 VICI

Preliminary Analysis Interpreter

 8 Interpreter
This section examines the issues surrounding the run time interpreter.

 8.1 Structure

The core structure of the interpreter will be used by both the run-time and the
editor (for testing). Placing it into a shared library might therefore be a good
idea.

The script will most likely be provided as an XML file which will be unpacked
into an internal representation of the script. Thread objects will then navigate
this structure and initiate the system commands as necessary (or execute built-
in commands such as “cd”).

The program will include a menu to which the scripts are attached. Options to
restart and stop execution should be included.

The program should include an optional target for drag-n-drop of file names.

Text areas for accepting user input and displaying stdout and stderr will be
optionally provided if the script specifies them.

 8.2 Security

Normally when we download scripts off the internet they are confined to the
browser sandbox and are not allowed (we hope) to access or modify the user's
files (without explicit approval). However the scripts for a visual scripting
language will be just ordinary XML files which could easily be downloaded
from random places on the net and easily installed and run by an ordinary user.
This could quickly become a bit of a problem.

One possible solution is to cryptographically sign the scripts. The editor would
sign a script with the user's private key. The editor and runtime would only
open or run scripts using the user's public key, or perhaps one of another set of
public keys controlled by the system administrator. The latter set would allow
scripts to be used across a site, or to be installed from the distribution's
repository.

An administrator could make a script more widely available by temporarily
accepting the developer's public key into the set of allowed public keys,
opening the script and then saving it using the site wide private key.

28 VICI

Preliminary Analysis Conclusion

 9 Conclusion
There is nothing in this project that is new or unusual. It should prove to be a
straightforward development project.

If brought to a successful conclusion the project should provide users with a
useful tool for automating some of their more repetitive tasks.

 9.1 Development Model

There is no large amount of infrastructure that needs to be built, nor is there a
shifting set of requirements. A test driven iterative development model is
probably the best approach.

Later experience has resulted in an incremental development model being
adopted since the project is taking a lot more effort than originally expected.

29 VICI

http://ocratato.blogspot.com.au/2011/05/software-development-process.html

Preliminary Analysis Appendix A - Glossary

Appendix A - Glossary

Term Explanation

Administrator A person responsible for ensuring that a computer
system performs correctly. Usually an administrator will
have additional privileges that allow them to perform
tasks that an ordinary user is not allowed to.

CDE Common Desktop Environment. An early graphical user
interface shell that was standard on many UNIX
systems.

Debugging The process of determining the reason for a program not
behaving as desired, and applying an appropriate fix.

Dialog A window which is temporarily displayed by a GUI
program, usually to allow the user to enter some
information, or to advice of some change within the
program.

dot A computer program that calculates the layout of
graphical symbols on a diagram.

Drag-n-drop A technique that allows a user to drag a symbol
(including text) from one program to another.

EBNF Extended Backus–Naur Form. A language for
specifying languages.

Editor A program used to enter or modify the files used by
other programs.

Flow Chart A diagram that shows the sequence of events in some
process, usually including special symbols for decision.

GUI Graphical User Interface. A means of interacting with a
computer system using windows, icons, menus and a
pointing device (mouse).

IDE Integrated Development Environment. A computer
program designed to facilitate the creation of other
computer programs. The VICI Editor might be
considered to be a simple IDE.

info page An help file that explains the purpose and usage of
UNIX commands.

Java An object oriented programming language which is
normally executed by an interpreter.

JVM Java Virtual Machine. A computer program which
executes a Java program.

Linux A UNIX like operating system for computers using free
and open source development techniques.

30 VICI

Preliminary Analysis Appendix A - Glossary

Term Explanation

man page An help file that explains the purpose and usage of
UNIX commands

Nassi-Shneiderman A diagramming technique (similar to flow charts) that
uses overlapping rectangles to show the structure and
control of the process.

Object Oriented A programming technique that associates data items and
the functions that use them into packages with well
defined interfaces.

OS Operating System. The set of computer programs that
provide a standard interface between the application
programs and the hardware of the computer.

Parameter Information passed to a computer program as it starts.
This is normally used to modify the actions of the
program.

Paths The set of directories that a shell will examine when
attempting to find a command.

Program A set of instructions that control the actions of a
computer.

Script A set of commands in a file that is used by an
interpreter.

Shell A computer program which accepts user input, either
directly from the keyboard or indirectly from a file, and
starts other programs in response.

SourceForge A web site where projects can be placed so that multiple
developers can work on them.

stderr The default error file for a program. This is typically
connected to a terminal session so that the user can see
any error messages generated by the program.

stdin The default input file for a program. This is typically
connected to the keyboard so that the user's input is fed
to the program.

stdout The default output file for a program. This is typically
connected to a terminal session so that the user may see
the results from the program.

Syntax Chart A diagram describing the allowed syntax for a particular
language.

Tag An identifier that allows other objects to be classified in
some way.

Testing The process of determining if a program performs as it
was intended to.

31 VICI

Preliminary Analysis Appendix A - Glossary

Term Explanation

UNIX An operating system for computers.

User A person using a computer, usually to perform some
business or personal task.

VICI A project to provide a graphical method for creating an
interpreted script.

Visual Language A language that uses icons and other symbols rather
than text to convey its meaning.

Wikipedia An on-line encyclopaedia.

XML Extensible Markup Language. A format for a data file
which is intended to be self describing.

32 VICI

	1 Introduction
	1.1 Scope
	1.2 Overview
	1.3 Audience
	1.4 Project Name

	2 Survey Of Other Visual Shells
	2.1 Visual Programming Languages
	2.1.1 AgentSheets
	2.1.2 Alice
	2.1.3 Analytica
	2.1.4 AppWare
	2.1.5 AudioMulch
	2.1.6 Authorware
	2.1.7 Automator
	2.1.8 Befunge
	2.1.9 Blockly
	2.1.10 CODE
	2.1.11 CiMPLE
	2.1.12 DRAKON
	2.1.13 Flow-Based Programming
	2.1.14 Game Maker
	2.1.15 Google App Inventor
	2.1.16 Helix
	2.1.17 Illumination Software Creator
	2.1.18 LabVIEW
	2.1.19 Limnor
	2.1.20 Microsoft Visual Programming Language
	2.1.21 OpenWire
	2.1.22 Piet
	2.1.23 Prograph
	2.1.24 Simulink

	2.2 Summary

	3 UNIX Commands
	3.1 Useful Commands
	3.1.1 Linux In a Nutshell
	3.1.2 UNIX Tutorial
	3.1.3 Linux Commands, a Practical Reference
	3.1.4 Linux in a Nutshell
	3.1.5 Summary

	3.2 Parameters and Options
	3.2.1 Parameter List Styles
	3.2.2 Example EBNF
	3.2.3 Example Syntax Chart

	4 Visual Scripting Language
	4.1 Commands
	4.2 Control Structures
	4.3 Functions
	4.4 Data Objects
	4.5 Calculations
	4.6 Files
	4.7 User Interfaces
	4.8 Process Synchronisation
	4.9 User Configuration
	4.10 Feasibility Study

	5 Testing and Debugging
	5.1 Observation
	5.2 Testing

	6 Desktop Integration
	7 Command Search Capability
	7.1 Finding Commands
	7.2 Help on Commands

	8 Interpreter
	8.1 Structure
	8.2 Security

	9 Conclusion
	9.1 Development Model

	Appendix A - Glossary

