
VICI

VISUAL CHART INTERPRETER

Requirements

Publication History

Date Who What Changes

10 September 2012 Brenton Ross Initial version.

2 November 2014 Brenton Ross Addition of increment plan references.

18 July 2016 Brenton Ross Additional ideas in Appendix D

Copyright © 2009 - 2014 Brenton Ross
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
The software is released under the terms of the GNU General Public License version 3.

ii

Requirements

Table of Contents
 1 Introduction..4

 1.1 Scope..4
 1.2 Overview...4
 1.3 Audience...4

 2 Functional Requirements..5
 3 Environmental Requirements...11
 4 Quality Requirements...12

 4.1 Computational Requirements...12
 4.2 Deployability Requirements...13
 4.3 Software Text Requirements...13
 4.4 Software Specification Requirements...14
 4.5 Development Process Requirements..14

Appendix A - Commands...15
Appendix B – EBNF..22
Appendix C – Symbols...23
Appendix D – Ideas and Proposals...26

iii

Requirements Introduction

 1 Introduction
This document is the list of requirements for the Visual Chart Interpreter
(VICI) project.

 1.1 Scope

The document lists the functional, environmental and quality requirements.

 1.2 Overview

The requirements form the foundations upon which the entire development
process is built.

The architecture process will select a set of tactics which will transform these
requirements into a set of responsibilities. These responsibilities will then be
assigned to modules and implemented to create the desired system.

The requirements each have a priority:

1 Mandatory requirement that must be provided.

2 Very important requirement.

3 Important requirement.

4 Nice to have or optional requirement.

5 Unimportant requirement, but which would not be detrimental.

Each requirement is assigned to a build increment which are defined in the
Increment Plan.

 1.3 Audience

This document is intended to be used by the developers of the system, and
anyone else who needs to understand what the requirements were that drove
the design process.

4 VICI

Requirements Functional Requirements

 2 Functional Requirements
These are the requirements that define what the system must be able to do.

Identifier Priority/
Increment

Requirement

R1 2 / #4 Provide a means of preparing a command for use by
this system so that it can be more easily used by
ordinary users..

R2 2 / #4 The commands listed in Appendix A will be
prepared for use with this system.

R3 2 / #3 The system will allow an administrator to specify the
EBNF of the syntax for the commands that are
supported by this program.

R4 2 / #3 The EBNF used to define the syntax of a command's
parameters and options will be that specified in
Appendix B

R5 4 / #4 The system will allow an administrator to set up
aliases for common commands and some of their
parameters.

R6 1 / #6 Provide a means for users to create scripts using the
graphical interface.

R7 1 / #8 The system will allow the user to select from the set
of prepared commands.

R8 1 / #6 The system will allow the user to enter any
command and its parameters, not just those that have
been prepared for this system.

R9 3 / #8 Provide guidance for common commands, including
guidance on the parameters and easy to understand
documentation.

R10 1 / #6 The system shall allow the user to enter short
options, long options, parameters and name=value
pairs as required by the commands.

R11 2 / #8 Guide the user in selecting the parameters for the
commands used in their scripts.

R12 2 / #8 The system will allow the user to select the
parameters from a palette of parameters and options
applicable to the selected command.

R13 3 / #8 The system will hide or disable options and
parameters which are inapplicable.

R14 3 / #8 The system will display a syntax chart for the
selected command.

5 VICI

Requirements Functional Requirements

Identifier Priority/
Increment

Requirement

R15 1 / #6 Allow the user to define the processing order within
a script by laying out the commands in a flow chart.

R16 2 / #6 Provide a palette of common flowchart symbols.

R17 2 / #6 The visual scripting language (VSL) will use the
symbols described in Appendix C.

R18 3 / #6 Allow groups of symbols to be re-positioned while
maintaining the links between symbols.

R19 3 Allow a group of symbols to be promoted into being
a separate function.

R20 4 Provide an option that attempts automatic layout of
the flowchart diagram.

R21 2 / #6 Allow the user to insert comments into the
flowchart.

R22 1 / #10 The editor will create desktop files according to the
freedesktop.org specification. desktop-entry-spec-
1.0.html

R23 1 / #10 The editor will create menu entries for the desktop
according to the freedesktop.org specification.
menu-spec-1.0.html

R24 1 / #10 The editor will place desktop files and menu entries
according to the freedesktop.org specification.
basedir-spec-0.6.html

R25 1 / #10 The editor will allow the user to remove a script and
its associated desktop files and menu entries.

R26 1 / #10 Allow the user to install their script from the editor
in which it being created.

R27 1 / #5 Provide a means of allowing a user to find
commands that satisfy their needs.

R28 2 / #5 The editor will allow the user to use the apropos
command in order to search for commands to use.

R29 2 / #5 The editor will allow the user to search the
descriptions of the prepared commands.

R30 2 / #8 The editor shall allow the user to view the man page
for selected commands.

R31 2 / #8 The editor shall allow the user to view the info page
for selected commands.

R32 3 / #5 Allow the user to associate tag identifiers with the
commands.

6 VICI

Requirements Functional Requirements

Identifier Priority/
Increment

Requirement

R33 3 / #5 Provide an initial set of tags for commands.

R34 3 / #5 Allow the user to select commands using tags.

R35 3 / #5 Allow the user to build set expressions for the tags,
including union and intersection.

R36 3 / #5 The editor will allow the user to classify commands
by associating one or more tags with each one.

R37 4 / #5 The search tags will be able to be classified into an
hierarchy.

R38 2 / #9 Allow a user to test their script before installing it.

R39 2 / #9 Allow the user to step through the script one
command at a time with a visual indication of what
is happening.

R40 3 / #9 The VSL will allow the user to run a section of a
script by defining start and break points.

R41 3 / #9 The VSL will allow the user to run all or part of a
script in slow motion by inserting a configurable
amount of sleep between each command.

R42 3 / #9 Allow a user to observe the internal working of a
script while testing it.

R43 3 / #9 The VSL will allow the user to save and restore the
values of variables and the state of the call stacks so
that sections of a script can be re-run.

R44 3 / #9 The VSL will allow the user to edit the values of
variables while the system is paused.

R45 3 / #9 The system will allow the user to observe the values
of variables when run from within the editor.

R46 3 / #9 The system will clearly indicate which commands
are about to be processed, or are being processed,
and which variables are being referenced during
testing.

R47 3 / #9 The system will show the stack variables for the
thread that is currently being displayed.

R48 4 / #9 The system will allow the user to observe the content
of selected files while being run from with the editor.
An option to view the tail of the file shall be
provided.

R49 4 / #9 The system will allow the user to monitor the size of
files and other properties during testing.

7 VICI

Requirements Functional Requirements

Identifier Priority/
Increment

Requirement

R50 4 / #9 The system will allow the user to select and display
each thread separately.

R51 4 / #9 The system will allow the user to take a snapshot of
a file and restore it as necessary for their testing.

R52 3 / # The VSL will allow the user to define the colours,
patterns and textures used for the background of
commands and lines to best suit their vision and
cultural requirements.

R53 4 / # Provide the user with a configurable editor that
allows sub-windows to be sized and positioned.

R54 4 / # Automatically configure sub-windows according to
the size and shape of the display screen.

R55 2 / # The VSL will include the ability to group commands
and split them out into a separate function which can
be reused.

R56 2 / #6,7 The VSL will allow the user to attach a function to a
menu item so that it can be executed independently.

R57 3 / #6,7 The VSL will allow a function to be run as a
background task.

R58 1 / #6,7 The VSL will allow the user to determine which
command to execute next based on the exit status of
the previous command: either unconditionally, on
success, on fail, or on a particular exit status value.

R59 1 / #6,7 The VSL will allow the user to connect commands
using a pipeline. Connections may be from either
stdout, stderr, or both.

R60 1 / #6,7 The VSL will include a built in command for
changing the current working directory of the script.

R61 1 / #6,7 The VSL will include a built in command that passes
one line of input at a time to its output pipe. This
will allow the user to build a loop structure that
process each line of input.

R62 1 / #6,7 The VSL will include a built in command that sets
one or more parameters to the values on its input
pipe. This will allow the user to build a loop
structure that processes variables separated by white
space.

R63 2 / #6,7 The VSL will allow commands to be run in the
background. Such commands will be terminated
when the script completes.

8 VICI

Requirements Functional Requirements

Identifier Priority/
Increment

Requirement

R64 3 / #6,7 The VSL will allow the user to connect the output of
a command to a named pipe.

R65 3 / #6,7 The VSL will allow the user to send a signal to a
background command.

R66 1 / #6,7 The VSL will allow the user to connect the output of
a command to a file, and may specify over-write or
append modes.

R67 1 / #6,7 The VSL will include references to files.

R68 2 / #6,7 The VSL will include the equivalent of the in-line
file. The in-line file may contain references to
variables that will be expanded when the file is
referenced.

R69 3 / #6 The VSL will allow the user to specify a file as being
temporary, and such files will be automatically
removed when the script terminates.

R70 1 The system must prevent the user from running
random scripts. They should only be allowed to run
scripts they have constructed themselves, or those
provided by the system administrator.

R71 1 / #6,7 The VSL will allow the user to store the output of a
command into a variable.

R72 1 / #6,7 The VSL will allow the user to define variables and
constant values which can be referenced as (parts of)
parameters to commands by preceding their name
with a $ sign.

R73 2 / #6,7 The VSL will allow the user to perform simple
arithmetic on numeric variables. One of +, - , *, / and
% can be specified as the operator.

R74 3 / #6,7 The VSL will include built in variables containing
the process id of each command started in
background mode.

R75 3 / #6,7 The VSL will include a built in variable containing
the exit status of the last command to complete.

R76 3 / #6,7 The VSL will include built in variables that allow a
function to have parameters. These will be numeric
indexes into the parameters placed on the call stack.

R77 3 / # The VSL will enable the user to define variables that
will take the value dropped onto a text entry field in
the runtime. The runtime will display a text entry
field for each of these variables.

9 VICI

Requirements Functional Requirements

Identifier Priority/
Increment

Requirement

R78 4 / #6,7 The VSL will enable the user to define mutex
variables that can be used to synchronise the
processing of two or more threads of control within
the script.

R79 4 / #6,7 The VSL will enable the user to define a semaphore
variable and a signalling command that can be used
to increment the semaphore.

R80 1 / #10 Provide a means for users to run scripts from the
graphical desktop.

R81 1 / #7 Allow the user to navigate the script to some folder.

R82 1 / #7 Allow scripts to be triggered from events such as
program start, drag-n-drop, or menu action.

R83 2 / #7 Allow the user to terminate any running script from
a menu option.

R84 2 / #7 The runtime shall include menu entries for any script
function flagged as being attached to a menu.

R85 2 / #7 The runtime may provide text areas for accepting
user input and/or displaying stdout and stderr if the
script specifies them.

R86 3 / # Allow the user to launch their script by dragging and
dropping a file name onto the script's desktop
window.

R87 3 / # Allow the user to open a file browser using a menu
in the scripts desktop window.

R88 3 / #7 The runtime shall include options to stop and to
restart a script.

R89 4 / #11 Provide a means of automatically launching a script
at a prescribed time.

R90 2 / #4 Allow the user to export one or more prepared
commands.

R91 2 / #4 Allow the user to import one or more prepared
commands.

10 VICI

Requirements Environmental Requirements

 3 Environmental Requirements
These are the requirements that are determined by the environment in which
the system must operate.

Identifier Priority Requirement

RE1 1 The system must run on any Linux platform that
supports the freedesktop.org specification.

RE2 1 The system must use open source, GPL components
(or those which have no usage restrictions).

11 VICI

Requirements Quality Requirements

 4 Quality Requirements
These are also known as the non-functional requirements. They include a lot of
requirements that have the suffix “-ability”. These requirements are often the
most important for driving the high level design.

 4.1 Computational Requirements

These are the quality requirements that are to be satisfied by the executing
programs.

Identifier Priority Requirement

RQC1 2 The system must record in the script the user name of
anyone who edits it.

RQC2 2 The system must only open or run scripts which have
been signed by the user or by one of an administrator
controlled list.

RQC3 2 The system's UI components must present an
attractive and non-intimidating interface.

RQC4 3 The system should not place any significant extra
load on the system beyond what is necessary for the
commands being executed.

RQC5 2 The system must provide clear feedback for all
actions and error conditions. This must be provided
in clear English and include some guidance on what
action is required to resolve any problems.

RQC6 1 It must not be possible to use the system to gain
access that the user would not normally have.

RQC7 3 It should be easy to demonstrate the system. The
system should be packaged with a set of tutorials and
guides that make it easy to learn how to use.

RQC8 1 The runtime component must be dependable so that
the user can trust that their scripts will be executed
correctly and when needed.

12 VICI

Requirements Quality Requirements

 4.2 Deployability Requirements

These are requirements that are concerned with deploying the system and
administering it.

Identifier Priority Requirement

RQD1 2 The system must be easy to administer. It should
require little more than installing for it to be usable.

RQD2 3 The system must allow an administrator to promote a
user's script for site wide use.

RQD3 2 The editor should automatically backup scripts and
allow the user to easily revert to a previous version.

RQD4 2 Any configuration files must use a simple text format
or an editor for the format must be included. (XML
may be considered simple.)

RQD5 1 All data will be stored in open accessible formats
such as XML.

RQD6 3 The system shall include an administrator's guide, a
user's guide, tutorials and a video introduction that
demonstrates a complete script being made, installed
and run.

RQD7 4 The number of libraries that this system depends on
should be minimised, but not at the expense of best
practice.

 4.3 Software Text Requirements

These are requirements concerning the quality of the source code for the
system.

Identifier Priority Requirement

RQT1 3 It must be easy to extend the system to support
additional requirements.

RQT2 2 It must be easy to understand the programs so that
other developers can maintain and extend it.

RQT3 2 Variables and methods will have a consistent naming
standard.

RQT4 2 It shall be easy to adapt the software for new locales.

13 VICI

Requirements Quality Requirements

Identifier Priority Requirement

RQT5 3 It shall be possible to adapt the software for any
platform on which Linux runs a conforming desktop
environment.

RQT6 4 It must be easy to replace the system with an
alternative product.

RQT7 2 Support for testing the components must be included
as part of the system.

 4.4 Software Specification Requirements

These are requirements concerning the quality of the specification and design
of the system.

Identifier Priority Requirement

RQS1 2 The design of the system must be easy to follow.

RQS2 3 It shall be straightforward to build the system.

RQS3 3 It shall be easy to adapt the system to accommodate
new requirements.

RQS4 3 The design shall use a consistent naming standard.

RQS5 3 The design shall allow the system to be extended to
cater for additional functionality.

RQS6 3 The system shall be constructed in a modular manner
with the separate components capable of independent
testing.

RQS7 4 Components of the system will be as independent of
each other as is practical so that they may be changed
without adversely affecting other components.

 4.5 Development Process Requirements

These are requirements that relate to the development process that is
responsible for constructing the system.

Identifier Priority Requirement

RQP1 3 The system shall be developed using a well defined
development methodology.

14 VICI

Requirements Appendix A - Commands

Appendix A - Commands
The following commands have been selected for preparation for this system:

Command Comments

alias Not really applicable for a script language.

apropos Built in to the editor's help system.

 at Not applicable.

 atq Not applicable

atrm Not applicable

basename

bc

break Not required.

bzip2

 cal

case Not required.

cat

 cd Built in.

chgrp

chmod

chown

 cksum

 cmp

 colrm

column

 comm

continue Built in.

cp

15 VICI

Requirements Appendix A - Commands

Command Comments

cpio

crontab Not required.

cut

date

df

 diff

diff3

 dirname

 du

echo Built in.

env

 eval Not required

 ex

exec Not required

exit Not required.

 expand

export Not required.

expr

false

 fc Not required.

file

find

 fmt

fold

for Built in.

16 VICI

Requirements Appendix A - Commands

Command Comments

 free

function Built in.

grep

gunzip

gzip

head

history Not required.

hostname

 id

 if Built in.

ifconfig

 info Built into the editor help system.

 ispell

jobs Built in.

join

 kill

killall

last

 less May need a terminal session to work.

let Built in.

ln

locate

 logname

lpq

lpr

17 VICI

Requirements Appendix A - Commands

Command Comments

 lprm

 lpstat

ls

lsof

lsusb

 man Built into the editor help system.

mkdir

mkfifo

more May need a terminal session.

mv

netstat

nice

paste

pidof

ping

popd Not required.

pr

printenv

 ps

pushd Not required.

pwd

read Built in

return Built in

rm

rmdir

18 VICI

Requirements Appendix A - Commands

Command Comments

rpm

sed

select Not required

seq

set Built in

shift Not required

 sleep

sort

source Not required

split

strings

 tac

tail

tar

tee

test

time

times

top May need a terminal session

touch

tr

traceroute

trap

true

 typeset Not required or built in ?

19 VICI

Requirements Appendix A - Commands

Command Comments

 ulimit Not required.

umask

unalias Not required.

uname

unexpand

uniq

units

unset Not required.

until Built in.

uptime

users

 usleep

vmstat

w

wait Built in.

wall

wc

wget

whatis

which

while Built in.

who

whoami

whois

xargs

20 VICI

Requirements Appendix A - Commands

Command Comments

yes Not required.

zcat.

21 VICI

Requirements Appendix B – EBNF

Appendix B – EBNF
The following is the specification for the EBNF to be used, defined in its own
terms:

Grammar ::= { Production } ;

Production ::= Name “::=” Symbol { Symbol } “;” ;

Symbol ::= Terminal-Symbol | Nonterminal-Symbol ;

Terminal-Symbol ::= Quotation [“...” Quotation] ;

Quotation :: Quote Characters Quote ;

Quote ::= '”'| “'” ;

Nonterminal-Symbol ::= Name | Choice | Option | Repetition ;

Choice ::= Symbol “|” Symbol ;

Option ::= “[“ Symbol “]” ;

Repetition ::= “{“ Symbol “}” ;

22 VICI

Requirements Appendix C – Symbols

Appendix C – Symbols
This section defines the symbols used in the diagrams. The colours, patterns
and textures are the default values.

A rectangle represents a command
that is to be executed.

A diamond can also be used for
commands, but normally for those
where the exit status is important to
the logic of the script.

A blue rectangle represents a
command running as a background
task.

A black arrow represents an
unconditional flow of control.

A green arrow represents a flow of
control where the previous command
succeeded.

A red arrow represents a flow of
control where the previous command
failed.

An arrow with a number represents a
flow of control for a specific exit
status.

A thick green arrow represents a pipe
from stdout of the previous command
to stdin of the next.

A thick red arrow represents a pipe
from stderr of the previous command
to stdin of the next.

A thick grey arrow represents a pipe
between stdout and stderr of the
previous command and stdin of the
next.

23 VICI

Command

Command

Command

3

Requirements Appendix C – Symbols

A blue arrow represents a signal
between one process and another.

A function is named by starting it
from a rounded rectangle with a
name.

A green function start indicates that a
menu item should be created for the
function so that it can be run
independently.

A function can be referenced from
another function using this symbol.

A variable can be shown.

A constant value is shown using a
variable symbol in this yellow colour.

A file is shown as this symbol.

This represents an in-line file.

This represents a temporary file which
will be deleted when the script ends.

This will represent a named pipe.

This represents taking a lock on a
mutex.

24 VICI

Func

Start

Func

var

const

Requirements Appendix C – Symbols

This represents releasing a lock on a
mutex.

This represents a semaphore variable.

25 VICI

Requirements Appendix D – Ideas and Proposals

Appendix D – Ideas and Proposals
The appendix contains ideas and proposals for enhancements to VICI that have
not been formalised into specific requirements.

1. Integrate the Kaptain scripting system for creating dialogs for
specifying commands: http://kaptain.sourceforge.net/

Kaptain is a universal graphical front-end for command line
programs. It works on linux/UNIX platforms whereever Qt is
available. Release 0.73 is using qmake and is compatible with
Qt 4.

Someone writes a simple script (so called grammar) which
describes the possible arguments for a command line program
and Kaptain brings up a friendly dialog to the user to set up the
command line.

2. Optionally place a grid on the flow chart, with user defined spacing,
and optionally snap objects to the grid. This would remove the need to
do fiddly aligning of the objects.

3. Use some graph theory and the object and line properties to find
problems with the syntax of the flow charts.

4. Allow the user to undo changes. This will require the system to keep
snapshots or mementos of the current flowchart so that it can be
restored.

5. Performance boost by pooling Pipeline objects where they are reused in
loops. Will require some way of determining what should be pooled,
such as if it has been run before.

6. An interface to dbus that would allow the script to be either a client or
dbus server.

7. Add the info –apropos command to search.

8. Allow local variables in functions. This would allow more interesting
recursive functions.

9. Add “manifold” built-in programs so that flow of control can be split
into separate threads and joined.

10. Add a data-manifold so that streams can be merged and the next
process is blocked until data is available on all inputs.

11. Add support for message queues.

12. Add parenthesis to the EBNF to define a sequence. This would reduce
the need for subgraphs.

13. Add the ability to merge syntax charts.

14. Add an export to SVG for the syntax charts.

26 VICI

Requirements Appendix D – Ideas and Proposals

15. Add an export to SVG for the vici charts and an XSL script to create a
report of the script.

16. An option to for-each that runs its children in simultaneous threads.

17. Allow the user to add a description of the script. The help menu item
on vici can display it, and it can be used as the description in the
desktop file.

18. Add an internal command to translate URLs to filenames.

27 VICI

	1 Introduction
	1.1 Scope
	1.2 Overview
	1.3 Audience

	2 Functional Requirements
	3 Environmental Requirements
	4 Quality Requirements
	4.1 Computational Requirements
	4.2 Deployability Requirements
	4.3 Software Text Requirements
	4.4 Software Specification Requirements
	4.5 Development Process Requirements

	Appendix A - Commands
	Appendix B – EBNF
	Appendix C – Symbols
	Appendix D – Ideas and Proposals

