
Vision Statement for a Visual Chart Interpreter

Introduction

It has been my experience over the years that many computer users are quite happy to use arbitrarily 
complex GUI programs (see Blender for example), but are very nervous about using a command 
line program. 

The UNIX desktop environments, from CDE on, have focussed on running GUI programs. The 
result is that the amazingly rich set of command line UNIX/Linux programs is now almost invisible 
from the desktop. 

It is difficult for desktop users to use and combine these programs to automate their work. Many of 
us have seen office workers manually using a computer to perform the same tasks every day. It is 
often the case that these tasks can be automated with some simple shell scripting, but there is rarely 
the opportunity for experienced programmers to assist with this sort of work. The users have the 
motivation and probably the opportunity, but are often unaware that scripting is even a possibility.

The aim of this project is provide a set of tools that will give a novice user the ability to build and 
run scripts that can be used to automate some of their routine tasks.

In addition to actually constructing a script there are some other problems that must be overcome:

• There are literally thousands of programs available on a typical Linux computer. There 
must be some way for the novice user to select the programs required for their problem.

• Each program has its own set of parameters, and there is often very little that is common or 
standard in the selection of the identifiers for these parameters. Help in setting these 
parameters must be part of the solution.

• It must be possible to install the scripts into the desktop environment so that they can be 
used like any other program.

UNIX Command Line Programs

The UNIX command line programs were mostly designed with scripting in mind. The philosophy 
behind UNIX is to use small specialised programs that perform a single function, and to combine 
these into scripts to perform more complex, business specific, tasks.

The programs are usually designed so that the output of one (lines of text) can be easily used as the 
input of the next. It is common to find several programs combined into one of these pipelines in a 
typical script. For example to find the number of files in a directory one would do:

ls | wc ­l

where the ls command (short for list) produces a list of the files in the current directory. The output 
of this command is then passed to the wc command which, when given the -l option, outputs the 
number of lines of input it was given.

Commands can also be run in either foreground or background mode. A program running in the 
foreground causes the script to wait until it completes. A program running in the background is 
started and then control returns immediately to the script.

The main issues facing the novice user is that there are thousands of commands available, with 
names that are frequently so abbreviated as to be meaningless, and these commands take various 

1



options and parameters which are also difficult to remember. Even experienced script programmers 
usually need to review the parameters of the commands that they are using in their scripts.

Run Time Script Usage

A script for use in a graphical desktop is necessarily a little different from the usual command line 
script. For example, it needs to have a visual presence so that files can be passed to it from the file 
browser using drag-and-drop.

The interpreter for the script thus needs to have a menu, with at least an exit option. An option to 
change the current working directory would seem likely to be useful, as would an option to open a 
file browser. It would have other options which trigger the user's scripts. The program would also 
need to have a place where files can dropped.

Other user interactions with the script would be handled by programs like zenity run from within 
the script.

The editor would be responsible for installing the script into the standard desktop menu system and 
the usual association mechanism would execute the script using the interpreter when it was selected.

Command Wrappers

The lack of uniformity in the UNIX commands forces us to introduce some way of associating the 
command with its documentation, and providing a way of documenting the parameters both for 
human users and the editor program itself. An XML file, for each command, could provide this 
association.

The wrapper would contain the name of the command, a short description, the reference to the on-
line documentation (and the type of that documentation), the symbol to use for the command within 
the graphical editor, and the details of each parameter.

The system would come with a collection of wrappers for common commands. Experienced users 
could provide new wrappers in response to user's needs.

Searching

The user needs to be able to locate suitable commands for use in their scripts. The editor needs to 
provide an indexed search capability over the short descriptions in the wrappers, as well as over the 
on-line documentation.

The editor might also usefully provide a simple cataloguing system where a hierarchy of classes of 
programs could be defined and the commands classified into one or more of these classes. The user 
could then search by selecting classes and getting a list of those commands that match. The search 
could be refined by allowing the union or intersection operation to be performed on the list of 
commands.

Building Scripts

The user should be able to build multiple “event scripts” with each one triggered by an event in the 
run-time interpreter. There would be two standard events – “start” and “drop”. Other events could 
be defined and added into the menu tree.

The script would be assembled by placing symbols into a diagram that has the appearance of a flow 
chart. This is a simple structure that is easily understood.

2



There would be some standard symbols representing conditional and loop constructs. A section of a 
chart could be “grouped” to form the equivalent of a function which could be re-used. Lines 
connecting the symbols would indicate the sequence in which the commands were to be executed 
and other lines would indicate the pipeline connection data flow between programs (and files). 
Other symbols would represent variables which could be assigned values during the execution of 
the script. It will also be possible to flag a group of commands to be run as a background task.

Test and Installation

The editor program will need to allow the user to test their script and monitor its behaviour. Hence 
it will need to be able to call the interpreter, and the interpreter will need a mode that allows its state 
to be monitored.

Once the user is satisfied with their script they will need to be able to install it into their desktop 
menu system.

Summary

A system comprising a visual editor and a graphical interpreter application is proposed. It aims to 
make the Linux command line programs readily accessible to desktop users and to allow those users 
to automate some of their routine tasks.

3


	Vision Statement for a Visual Chart Interpreter
	Introduction
	UNIX Command Line Programs
	Run Time Script Usage
	Command Wrappers
	Searching
	Building Scripts
	Test and Installation
	Summary


